RESUMO
Cys-loop receptors are pentameric ligand-gated ion channels that facilitate communication within the nervous system. Upon neurotransmitter binding, these receptors undergo an allosteric activation mechanism connecting the binding event to the membrane-spanning channel pore, which expands to conduct ions. Some of the earliest steps in this activation mechanism are carried out by residues proximal to the binding site, the relative positioning of which may reflect functional differences among members of the Cys-loop family of receptors. Herein, we investigated key side-chain interactions near the binding site via mutagenesis and two-electrode voltage-clamp electrophysiology in serotonin-gated 5-HT3A receptors (5-HT3ARs) and nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes. We found that a triad of residues aligning to Thr-152, Glu-209, and Lys-211 in the 5-HT3AR can be exchanged between the homomeric 5-HT3AR and the muscle-type nAChR α-subunit with small functional consequences. Via triple mutant cycle analysis, we demonstrated that this triad forms an interdependent network in the muscle-type nAChR. Furthermore, nAChR-type mutations of the 5-HT3AR affect the affinity of nicotine, a competitive antagonist of 5-HT3ARs, in a cooperative manner. Using mutant cycle analyses between the 5-HT3A triad, loop A residues Asn-101 and Glu-102, ß9 residue Lys-197, and the channel gate at Thr-257, we observed that residues in this region are energetically linked to the channel gate and are particularly sensitive to mutations that introduce a net positive charge. This study expands our understanding of the differences and similarities in the activation mechanisms of Cys-loop receptors.
Assuntos
Modelos Moleculares , Receptores Nicotínicos/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Acetilcolina/química , Acetilcolina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Agonistas Colinérgicos/química , Agonistas Colinérgicos/metabolismo , Humanos , Cinética , Ligantes , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Nicotina/química , Nicotina/metabolismo , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/metabolismo , Conformação Proteica , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de SequênciaRESUMO
Erwinia ligand-gated ion channel (ELIC) is a bacterial homologue of vertebrate pentameric ligand-gated ion channels (pLGICs) and has proven to be a valuable model for understanding the structure and function of this important protein family. There is nevertheless still a question about whether molecular details can be accurately extrapolated from this protein to those found in eukaryotes. Here we explore the role of proline residues (Pros) in ELIC by creating mutant receptors, expressing them in Xenopus laevis oocytes, and using whole-cell voltage-clamp electrophysiology to monitor channel activity. In contrast to eukaryotic pLGICs, proline-to-alanine (Pro-to-Ala) substitution in ELIC mostly resulted in gain of function, and even altering highly conserved Pro residues in M1 and the M2-M3 loop did not ablate function. These substitutions also mostly resulted in ablation of the modulation by Ca2+ observed in wild-type receptors. Substitution of the Pro in the "Cys loop", however, did result in nonfunctional receptors. Probing this residue with noncanonical amino acids revealed a requirement for a substituted amine at this position, as well as a general preference for Pro analogues with greater intrinsic cis biases. We propose there is likely a cis bond at the apex of the Cys loop in this protein, which is consistent with some, but not all, findings from other pLGICs. Overall, the data show that the roles of proline residues are less critical in ELIC than in other pLGICs, supporting other studies that suggest caution must be applied in using data from this prokaryotic receptor to understand molecular details of eukaryotic pLGIC receptor function.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Erwinia/química , Erwinia/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas de Bactérias/genética , Erwinia/genética , Canais Iônicos de Abertura Ativada por Ligante/genética , Modelos Moleculares , Prolina/química , Prolina/genética , Prolina/metabolismo , Conformação Proteica , Alinhamento de Sequência , XenopusRESUMO
Emerging and re-emerging viral pathogens present a unique challenge for anti-viral therapeutic development. Anti-viral approaches with high flexibility and rapid production times are essential for combating these high-pandemic risk viruses. CRISPR-Cas technologies have been extensively repurposed to treat a variety of diseases, with recent work expanding into potential applications against viral infections. However, delivery still presents a major challenge for these technologies. Lipid-coated mesoporous silica nanoparticles (LCMSNs) offer an attractive delivery vehicle for a variety of cargos due to their high biocompatibility, tractable synthesis, and amenability to chemical functionalization. Here, we report the use of LCMSNs to deliver CRISPR-Cas9 ribonucleoproteins (RNPs) that target the Niemann-Pick disease type C1 gene, an essential host factor required for entry of the high-pandemic risk pathogen Ebola virus, demonstrating an efficient reduction in viral infection. We further highlight successful in vivo delivery of the RNP-LCMSN platform to the mouse liver via systemic administration.
Assuntos
Sistemas CRISPR-Cas , Nanopartículas , Camundongos , Animais , Edição de Genes , Antivirais , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , LipídeosRESUMO
A rapid response is necessary to contain emergent biological outbreaks before they can become pandemics. The novel coronavirus (SARS-CoV-2) that causes COVID-19 was first reported in December of 2019 in Wuhan, China and reached most corners of the globe in less than two months. In just over a year since the initial infections, COVID-19 infected almost 100 million people worldwide. Although similar to SARS-CoV and MERS-CoV, SARS-CoV-2 has resisted treatments that are effective against other coronaviruses. Crystal structures of two SARS-CoV-2 proteins, spike protein and main protease, have been reported and can serve as targets for studies in neutralizing this threat. We have employed molecular docking, molecular dynamics simulations, and machine learning to identify from a library of 26 million molecules possible candidate compounds that may attenuate or neutralize the effects of this virus. The viability of selected candidate compounds against SARS-CoV-2 was determined experimentally by biolayer interferometry and FRET-based activity protein assays along with virus-based assays. In the pseudovirus assay, imatinib and lapatinib had IC50 values below 10 µM, while candesartan cilexetil had an IC50 value of approximately 67 µM against Mpro in a FRET-based activity assay. Comparatively, candesartan cilexetil had the highest selectivity index of all compounds tested as its half-maximal cytotoxicity concentration 50 (CC50) value was the only one greater than the limit of the assay (>100 µM).
RESUMO
New therapies are necessary to combat increasingly antibiotic-resistant bacterial pathogens. We have developed a technology platform of computational, molecular biology, and microbiology tools which together enable on-demand production of phages that target virtually any given bacterial isolate. Two complementary computational tools that identify and precisely map prophages and other integrative genetic elements in bacterial genomes are used to identify prophage-laden bacteria that are close relatives of the target strain. Phage genomes are engineered to disable lysogeny, through use of long amplicon PCR and Gibson assembly. Finally, the engineered phage genomes are introduced into host bacteria for phage production. As an initial demonstration, we used this approach to produce a phage cocktail against the opportunistic pathogen Pseudomonas aeruginosa PAO1. Two prophage-laden P. aeruginosa strains closely related to PAO1 were identified, ATCC 39324 and ATCC 27853. Deep sequencing revealed that mitomycin C treatment of these strains induced seven phages that grow on P. aeruginosa PAO1. The most diverse five phages were engineered for nonlysogeny by deleting the integrase gene (int), which is readily identifiable and typically conveniently located at one end of the prophage. The Δint phages, individually and in cocktails, killed P. aeruginosa PAO1 in liquid culture as well as in a waxworm (Galleria mellonella) model of infection.IMPORTANCE The antibiotic resistance crisis has led to renewed interest in phage therapy as an alternative means of treating infection. However, conventional methods for isolating pathogen-specific phage are slow, labor-intensive, and frequently unsuccessful. We have demonstrated that computationally identified prophages carried by near-neighbor bacteria can serve as starting material for production of engineered phages that kill the target pathogen. Our approach and technology platform offer new opportunity for rapid development of phage therapies against most, if not all, bacterial pathogens, a foundational advance for use of phage in treating infectious disease.
RESUMO
Cys-loop receptors are important drug targets that are involved in signaling in the nervous system. The binding of neurotransmitters in the extracellular region of these receptors triggers an allosteric activation mechanism, the full details of which remain elusive, although structurally flexible loops in the interface between the extracellular region of Cys-loop receptors and the pore-forming transmembrane domain are known to play an important role. Here we explore the roles of three largely conserved Pro residues in two of these loops, the Cys-loop and M2-M3 loop, in 5-HT3A and α7 nACh receptors. The data from natural and noncanonical amino acid mutagenesis suggest that in both proteins a Pro is essential in the Cys-loop, probably because of its enhanced ability to form a cis peptide bond, although other factors are also involved. The important characteristics of Pros in the M2-M3 loop, however, differ in these two receptors: in the 5-HT3 receptor, the Pros can be replaced by some charged amino acids resulting in EC50s similar to those of wild-type receptors, while such substitutions in the nACh receptor ablate function. Ala substitution at one of these Pros also has different effects in the two receptors. Thus, our data show that even highly conserved residues can have distinct behaviors in related Cys-loop receptors.