Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Electrophoresis ; 34(11): 1572-80, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23483567

RESUMO

Fabry condition, a lysosomal storage disease (LSD) is characterized by the absence or reduction of the α-galactosidase A activity. Recently, a new diagnostic method for detection of α-galactosidase activity from dried blood spots (DBS) using a chemical substrate and quantification of reaction mixture was developed. To improve this method in the terms of automation, reproducibility, sensitivity, and data reliability, we introduce here an innovative analytical approach based on chip-nanoESI MS. The α-galactosidase assay products derived from DBS of 11 healthy donors and 11 Fabry disease patients were analyzed by NanoMate robot coupled to a high-capacity ion trap MS. Confirmation and structural analysis of the reaction products was achieved by CID and electron transfer dissociation (ETD) MS/MS. The cleavage of a substrate GLA-S generated a product, GLA-P, which was quantified related to an internal standard GLA-IS. Comparative patient versus control analysis indicated a 13-fold reduction in GLA-P/GLA-IS ratio in the case of the patients. Moreover, our method provided direct data on the enzyme, from which it was for the first time possible to discriminate between the patients lacking the enzyme and those presenting a less active one. GLA-IS and GLA-P were confirmed by CID/ETD, which applied together, increased considerably the sequence coverage and provided complementary information for unambiguous product identification. The present chip-nanoESI CID and ETD MS(n) strategy introduced here for first time in LSD diagnosis, provided a maximum confidence in assay product identification, a high sensitivity, speed of analysis, and result reproducibility.


Assuntos
Doença de Fabry/diagnóstico , Dispositivos Lab-On-A-Chip , Espectrometria de Massas por Ionização por Electrospray/instrumentação , alfa-Galactosidase , Teste em Amostras de Sangue Seco , Doença de Fabry/sangue , Doença de Fabry/enzimologia , Humanos , Dispositivos Lab-On-A-Chip/economia , Espectrometria de Massas por Ionização por Electrospray/economia , Fatores de Tempo , alfa-Galactosidase/sangue , alfa-Galactosidase/metabolismo
2.
Biomedicines ; 10(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35885043

RESUMO

The goal of this research was to design novel chloro-substituted salicylanilide derivatives and their ß-cyclodextrin complexes in order to obtain efficient antibacterial compounds and to demonstrate the beneficial role of complexation on the efficiency of these compounds. Thus, salicylanilide derivatives, esters, and hydrazides were obtained by microwave-assisted synthesis and their structure proven based on FTIR and NMR spectra. In order to improve water solubility, chemical and physical stability, and drug distribution through biological membranes, the inclusion complexes of the ethyl esters in ß-cyclodextrin were also obtained using kneading. Inclusion-complex characterization was accomplished by modern analytical methods, X-ray diffraction, SEM, TGA, FTIR, and UV-vis spectroscopy. The newly synthesized compounds were tested against some Gram-positive and Gram-negative bacteria. Antimicrobial tests revealed good activity on Gram-positive bacteria and no inhibition against Gram-negative strains. The MIC and MBC values for compounds derived from N-(2-chlorophenyl)-2-hydroxybenzamide were 0.125-1.0 mg/mL. N-(4-chlorophenyl)-2-hydroxybenzamide derivatives were found to be less active. The inclusion complexes generally behaved similarly to the guest compounds, and antibacterial activity was not been altered by complexation.

3.
Anal Biochem ; 378(1): 43-52, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18406832

RESUMO

NanoMate robot was coupled to a high-capacity ion trap (HCT) mass spectrometer to create a system merging automatic chip-based electrospray ionization (ESI) infusion, ultrafast ion detection, and multistage sequencing at superior sensitivity. The interface between the NanoMate and HCT mass spectrometer consists of an in-laboratory constructed mounting device that allows adjustment of the robot position with respect to the mass spectrometer inlet. The coupling was optimized for ganglioside (GG) high-throughput analysis in the negative ion mode and was implemented in clinical glycolipidomics for identification and structural characterization of anencephaly-associated species. By NanoMate HCT mass spectrometry (MS), data corroborating significant differences in GG expression in anencephalic versus age-matched normal brain tissue were collected. The feasibility of chip-based nanoESI HCT multistage collision-induced dissociation (CID MS(n)) for polysialylated GG fragmentation and isomer discrimination was tested on a GT1 (d18:1/18:0) anencephaly-associated structure. MS(2)-MS(4) obtained by accumulating scans at variable fragmentation amplitudes gave rise to the first fragmentation patterns from which the presence of GT1b structural isomer could be determined unequivocally without the need for supplementary investigation by any other analytical or biochemical methods.


Assuntos
Gangliosídeos/análise , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Automação , Gangliosídeos/química , Íons/química , Nanoestruturas/química
4.
J Biotechnol ; 155(3): 338-49, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21820018

RESUMO

Levansucrases of Pseudomonas syringae pv. tomato DC3000 (Lsc3) and Pseudomonas chlororaphis subsp. aurantiaca (also Pseudomonas aurantiaca) (LscA) have 73% identity of protein sequences, similar substrate specificity and kinetic properties. Both enzymes produce levan and fructooligosaccharides (FOS) of varied length from sucrose, raffinose and sugar beet molasses. A novel high-throughput chip-based nanoelectrospray mass spectrometric method was applied to screen alternative fructosyl acceptors for levansucrases. Lsc3 and LscA could both transfructosylate D-xylose, D-fucose, L- and D-arabinose, D-ribose, D-sorbitol, xylitol, xylobiose, D-mannitol, D-galacturonic acid and methyl-α-D-glucopyranoside and heterooligofructans with degree of polymerization up to 5 were detected. The ability of D-sorbitol, xylobiose, D-galacturonic acid, D-mannitol, xylitol and methyl-α-D-glucopyranoside to serve as fructosyl acceptors for levansucrases is shown for the first time. Expectedly, site-directed mutagenesis of His321 in Lsc3 to Arg, Lys, Leu and Ser resulted in proteins with decreased catalytic activity, affinity for sucrose and polymerizing ability. Random mutagenesis yielded a Lsc3 mutant Thr302Pro with reduced synthesis of levan and long-chain FOS. Thr302 is located in conserved DQTERP region of levansucrases adjacent to predicted acid-base catalyst Glu303. Thr302 and His321 are predicted to belong to +1 subsite of the substrate binding region of Lsc3.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Frutose/metabolismo , Hexosiltransferases/química , Hexosiltransferases/metabolismo , Pseudomonas/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Cromatografia em Camada Fina , Frutanos/metabolismo , Hexosiltransferases/genética , Histidina , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oligopeptídeos , Pseudomonas/genética , Pseudomonas syringae/enzimologia , Pseudomonas syringae/genética , Rafinose/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Especificidade por Substrato/genética , Sacarose/metabolismo
5.
Rapid Commun Mass Spectrom ; 23(9): 1337-46, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19337979

RESUMO

Pseudomonas syringae pathovars possess multiple levansucrases with still unclear specific roles for bacteria. We have cloned and expressed three levansucrase genes, lsc1, lsc2 and lsc3, from P. syringae DC3000 in Escherichia coli. Levansucrases synthesize a high molecular weight fructan polymer, levan, from sucrose and in the case of some levansucrases, fructooligosaccharides (FOS) with potential prebiotic effects are also produced. The ability of purified Lsc3 protein of DC3000 to synthesize FOS was tested using prolonged incubation time and varied concentrations of sugar substrates. Thin-layer chromatography (TLC) analysis of reaction products disclosed formation of FOS from both sucrose and raffinose, revealing a new catalytic property for P. syringae levansucrases. In order to analyze Lsc3-produced FOS in underivatized form, we optimized a novel method recently introduced in carbohydrate research, based on fully automated chip-based nanoelectrospray ionization (nanoESI) high-capacity ion trap mass spectrometry (HCT-MS). Uding chip-based nanoESI MS in negative ion mode, FOS, with degrees of polymerization up to five, were detected in reaction mixtures of Lsc3 with sucrose and raffinose. For confirmation, further structural analysis by tandem mass spectrometry (MS/MS) employing collision-induced dissociation at low energies was performed. To validate the method, commercial inulin-derived FOS preparations Orafti P95 and Orafti Synergy1, which are currently used as prebiotics, were used as controls. By chip-based nanoESI HCT-MS, similar FOS distribution was observed in these reference mixtures. Thereby, the obtained data allowed us to postulate that FOS produced by the Lsc3 protein of P. syringae DC3000 may be prebiotic as well.


Assuntos
Hexosiltransferases/metabolismo , Procedimentos Analíticos em Microchip/métodos , Oligossacarídeos/análise , Oligossacarídeos/genética , Pseudomonas syringae/enzimologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cromatografia em Camada Fina , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Hexosiltransferases/genética , Estrutura Molecular , Oligossacarídeos/metabolismo , Pseudomonas syringae/genética , Rafinose/metabolismo , Sacarose/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA