Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Environ Sci Technol ; 58(21): 9427-9435, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38747404

RESUMO

Photoexcitation of sulfite (SO32-) is often used to generate hydrated electrons (eaq-) in processes to degrade perfluoroalkyl and polyfluoroalkyl substances (PFASs). Conventional consensus discourages the utilization of SO32- concentrations exceeding 10 mM for effective defluorination. This has hindered our understanding of SO32- chemistry beyond its electron photogeneration properties. In contrast, the radiation-chemical study presented here, directly producing eaq- through water radiolysis, suggests that SO32- plays a previously overlooked activation role in the defluorination. Quantitative 60Co gamma irradiation experiments indicate that the increased SO32- concentration from 0.1 to 1 M enhances the defluorination rate by a remarkable 15-fold, especially for short-chain perfluoroalkyl sulfonate (PFSA). Furthermore, during the treatment of long-chain PFSA (C8F17-SO3-) with a higher concentration of SO32-, the intermediates of C8H17-SO3- and C3F7-COO- were observed, which are absent without SO32-. These observations highlight that a higher concentration of SO32- facilitates both reaction pathways: chain shortening and H/F exchange. Pulse radiolysis measurements show that elevated SO32- concentrations accelerate the bimolecular reaction between eaq- and PFSA by 2 orders of magnitude. 19F NMR measurements and theoretical simulations reveal the noncovalent interactions between SO32- and F atoms, which exceptionally reduce the C-F bond dissociation energy by nearly 40%. As a result, our study offers a more effective strategy for degrading highly persistent PFSA contaminants.


Assuntos
Elétrons , Fluorocarbonos , Sulfitos , Sulfitos/química , Fluorocarbonos/química , Água/química
2.
Phys Chem Chem Phys ; 26(15): 11604-11610, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38545925

RESUMO

Picosecond pulse radiolysis measurements were employed to assess the effectiveness of N3- in scavenging quasi-free electrons in aqueous solutions. The absorption spectra of hydrated electrons were recorded within a 100 ps timeframe across four distinct solutions with N3- concentrations of 0.5, 1, 2, and 5 M in water. The results revealed a concentration-dependent shift in the maximum absorption spectra of fully solvated electrons. Notably, at 5 M concentration, the maximum absorption occurred at 670 nm, in contrast to 715 nm observed for water. Intriguingly, the formation yield of hydrated electrons within the initial 5 ps electron pulse remained unaffected, showing that, even at a concentration of 5 M, N3- does not effectively scavenge quasi-free electrons. This is in disagreement with conclusions from stochastic models found in the literature. This observation has an important impact on understanding the mechanism of H2 formation in water radiolysis, which we discuss briefly here.

3.
J Am Chem Soc ; 145(9): 5578-5588, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36812014

RESUMO

High-energy radiation that is compatible with renewable energy sources enables direct H2 production from water for fuels; however, the challenge is to convert it as efficiently as possible, and the existing strategies have limited success. Herein, we report the use of Zr/Hf-based nanoscale UiO-66 metal-organic frameworks as highly effective and stable radiation sensitizers for purified and natural water splitting under γ-ray irradiation. Scavenging and pulse radiolysis experiments with Monte Carlo simulations show that the combination of 3D arrays of ultrasmall metal-oxo clusters and high porosity affords unprecedented effective scattering between secondary electrons and confined water, generating increased precursors of solvated electrons and excited states of water, which are the main species responsible for H2 production enhancement. The use of a small quantity (<80 mmol/L) of UiO-66-Hf-OH can achieve a γ-rays-to-hydrogen conversion efficiency exceeding 10% that significantly outperforms Zr-/Hf-oxide nanoparticles and the existing radiolytic H2 promoters. Our work highlights the feasibility and merit of MOF-assisted radiolytic water splitting and promises a competitive method for creating a green H2 economy.

4.
Phys Chem Chem Phys ; 25(23): 15916-15919, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37260195

RESUMO

The reactivity of electrons in the CO2-water system was evaluated through picosecond electron pulse radiolysis at different gas pressures (ranging from 1 to 118 bar) and temperatures (25 and 35 °C) coupled with UV-vis transient spectroscopy. A custom-made spectroscopic cell was utilized for these experiments, which allowed for regulation of temperature and pressure. The scavenging of electrons was measured directly at gas pressures even in the supercritical state, and the results showed a non-monotonic dependence of electron reactivity with CO2 concentration, in agreement with the changing molar concentration of CO2 in water under varying pressure.

5.
Chemistry ; 27(31): 8185-8194, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33772902

RESUMO

Numerous additives are used in the electrolytes of lithium-ion batteries, especially for the formation of an efficient solid electrolyte interphase at the surface of the electrodes. Understanding the degradation processes of these compounds is thus important; they can be seen through radiolysis. In the case of fluoroethylene carbonate (FEC), picosecond pulse radiolysis experiments evidenced the formation of FEC.- . This radical is stabilized in neat FEC, whereas the ring opens to form more stable radical anions when FEC is a solute in other solvents, as confirmed by quantum chemistry calculations. In neat FEC, pre-solvated electrons primarily undergo attachment rather than solvation. On long timescales, the gases produced (H2 , CO, and CO2 ) were quantified. A reaction scheme for both the oxidizing and reducing pathways at stake in irradiated FEC is proposed. This work shows that the nature of the primary species formed in FEC depends on the amount of FEC in the solution.

6.
Chemphyschem ; 22(18): 1900-1906, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34216092

RESUMO

The present study proposes a new approach for direct CO2 conversion using primary radicals from water irradiation. In order to ensure reduction of CO2 into CO2-. by all the primary radiation-induced water radicals, we use formate ions to scavenge simultaneously the parent oxidizing radicals H. and OH. producing the same transient CO2-. radicals. Conditions are optimized to obtain the highest conversion yield of CO2 . The goal is achieved under mild conditions of room temperature, neutral pH and 1 atm of CO2 pressure. All the available radicals are exploited for selectively converting CO2 into oxalate that is accompanied by H2 evolution. The mechanism presented accounts for the results and also sheds light on the data in the literature. The radiolytic approach is a mild and scalable route of direct CO2 capture at the source in industry and the products, oxalate salt and H2 , can be easily separated.

7.
Phys Chem Chem Phys ; 23(10): 5804-5808, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33683267

RESUMO

The reactivity of presolvated electrons with CO2 and N2O was studied in the gas pressure range of 1 to 52 bar. To measure this reactivity, a home-made spectroscopic cell with liquid circulation was developed which can work up to 70 bar of gas pressure. The efficiency of presolvated electron scavenging was determined from the decrease of the solvated electron yield after the application of a 5 ps electron pulse. In addition, the reaction rate between these molecules and solvated electrons was directly determined at gas pressures below the gas critical point, which is in agreement with those presented in the literature measured at gas pressures below <1 atm.

8.
Phys Chem Chem Phys ; 23(46): 26494-26500, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34806743

RESUMO

Metal nanoparticles can catalyze reactions involving organic free radicals. From the first studies focused on the catalytic reduction of water by free radicals until today, the catalytic oxidation of organic radicals has not received attention. In this work, we present the results on the catalytic activity of gold nanoparticles in the oxidation of 2-propanol to acetone and acetanilide hydroxylation during water radiolysis. A detailed reaction mechanism of α-hydroxyisopropyl radical oxidation is discussed, explaining the increase in acetone formation by ca. 340% in the presence of gold nanoparticles. In the case of acetanilide hydroxylation in the presence of nanoparticles, a strong effect of oxygen in the reaction mechanism was observed: the increase in the oxygen concentration from 0 to 1.22 mM leads to a 40-fold decrease in hydroxylation product formation. This observation is unexpected since, in the absence of gold nanoparticles, oxygen stimulates hydroxylation reactions. We propose that in the presence of both oxygen and nanoparticles, oxygen attaches first to acetanilide OH-adducts, and then nanoparticles catalyze the oxidation of peroxyl type radicals, which does not lead to the formation of hydroxylation products.

9.
Phys Chem Chem Phys ; 23(37): 21148-21162, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34528029

RESUMO

The early mechanisms by which ionizing rays damage biological structures by so-called direct effects are largely elusive. In a recent picosecond pulse radiolysis study of concentrated uridine monophosphate solutions [J. Ma, S. A. Denisov, J.-L. Marignier, P. Pernot, A. Adhikary, S. Seki and M. Mostafavi, J. Phys. Chem. Lett., 2018, 9, 5105], unexpected results were found regarding the oxidation of the nucleobase. The signature of the oxidized nucleobase could not be detected 5 ps after the electron pulse, but only the oxidized phosphate, raising intriguing questions about the identity of charge-transfer mechanisms that could explain the absence of U+. We address here this question by means of advanced first-principles atomistic simulations of solvated uridine monophosphate, combining Density Functional Theory (DFT) with polarizable embedding schemes. We contrast three very distinct mechanisms of charge transfer covering the atto-, femto- and pico-second timescales. We first investigate the ionization mechanism and subsequent hole/charge migrations on a timescale of attoseconds to a few femtoseconds under the frozen nuclei approximation. We then consider a nuclear-driven phosphate-to-oxidized-nucleobase electron transfer, showing that it is an uncompetitive reaction channel on the sub-picosecond timescale, despite its high exothermicity and significant electronic coupling. Finally, we show that non-adiabatic charge transfer is enabled by femtosecond nuclear relaxation after ionization. We show that electronic decoherence and the electronic coupling strength are the key parameters that determine the hopping probabilities. Our results provide important insight into the interplay between electronics and nuclear motions in the early stages of the multiscale responses of biological matter subjected to ionizing radiation.


Assuntos
Uridina Monofosfato/química , Água/química , Teoria da Densidade Funcional , Transporte de Elétrons , Hélio/química , Íons/química , Simulação de Dinâmica Molecular , Uridina Monofosfato/metabolismo
10.
J Phys Chem A ; 125(36): 7967-7975, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34470211

RESUMO

Substitution of the thymidine moiety in DNA by C5-substituted halogenated thymidine analogues causes significant augmentation of radiation damage in living cells. However, the molecular pathway involved in such radiosensitization process has not been clearly elucidated to date in solution at room temperature. So far, low-energy electrons (LEEs; 0-20 eV) under vacuum condition and solvated electrons (esol-) in solution are shown to produce the σ-type C5-centered pyrimidine base radical through dissociative electron attachment involving carbon-halogen bond breakage. Formation of this σ-type radical and its subsequent reactions are proposed to cause cellular radiosensitization. Here, we report time-resolved measurements at room temperature, showing that a radiation-produced quasi-free electron (eqf-) in solution promptly breaks the C5-halogen bond in halopyrimidines forming the σ-type C5 radical via an excited transient anion radical. These results demonstrate the importance of ultrafast reactions of eqf-, which are extremely important in chemistry, physics, and biology, including tumor radiochemotherapy.

11.
Chemistry ; 26(43): 9495-9505, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32059063

RESUMO

The directionality of the hole-transfer processes between DNA backbone and base was investigated by using phosphorodithioate [P(S- )=S] components. ESR spectroscopy in homogeneous frozen aqueous solutions and pulse radiolysis in aqueous solution at ambient temperature confirmed initial formation of G.+ -P(S- )=S. The ionization potential of G-P(S- )=S was calculated to be slightly lower than that of guanine in 5'-dGMP. Subsequent thermally activated hole transfer from G.+ to P(S- )=S led to dithiyl radical (P-2S. ) formation on the µs timescale. In parallel, ESR spectroscopy, pulse radiolysis, and density functional theory (DFT) calculations confirmed P-2S. formation in an abasic phosphorodithioate model compound. ESR investigations at low temperatures and higher G-P(S- )=S concentrations showed a bimolecular conversion of P-2S. to the σ2 -σ*1 -bonded dimer anion radical [-P-2S - . 2S-P-]- [ΔG (150 K, DFT)=-7.2 kcal mol-1 ]. However, [-P-2S - . 2S-P-]- formation was not observed by pulse radiolysis [ΔG° (298 K, DFT)=-1.4 kcal mol-1 ]. Neither P-2S. nor [-P-2S - . 2S-P-]- oxidized guanine base; only base-to-backbone hole transfer occurs in phosphorodithioate.


Assuntos
Ânions/química , DNA/química , Guanina/química , Nucleosídeos/química , Fosfatos/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Radiólise de Impulso , Água/química
12.
Chemistry ; 26(43): 9407, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32567105

RESUMO

Invited for the cover of this issue are the groups of Roman Dembinski, Mehran Mostafavi, and Amitava Adhikary at the Polish Academy of Sciences, Université Paris-Saclay, and Oakland University. The image depicts a doughnut as a way of illustrating the hole transfer process. Read the full text of the article at 10.1002/chem.202000247.


Assuntos
Nucleosídeos/química , Fosfatos/química
13.
Chemphyschem ; 21(24): 2634-2643, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33078874

RESUMO

Silver cations were introduced in nanosized BEA-type zeolite containing organic template by ion-exchange followed by chemical reduction towards preparation of photoactive materials (Ag0 -BEA). The stabilization of highly dispersed Ag0 nanoparticles with a size of 1-2 nm in the BEA zeolite was revealed. The transient optical response of the Ag-BEA samples upon photoexcitation at 400 nm was studied by femtosecond absorption. The photodynamic of the hot electrons was found to depend on the sample preparation. The lifetime of the hot electrons in the Ag-BEA samples containing small Ag nanoparticles (1-2 nm) is significantly shortened in comparison to bear Ag nanoparticles with a size of 10 nm. While for the larger Ag nanoparticles, the energy absorbed in the conduction band is decaying by electron-phonon coupling into the metal lattice, the high surface-to-volume ratio of the small Ag nanoparticles favors the dissipation of the energy of the hot electrons from the metal nanoparticles (Ag0 ) towards the zeolitic micro-environment. This finding is encouraging for further applications of Ag-containing zeolites in photocatalysis and plasmonic chemistry.

14.
J Phys Chem A ; 124(51): 10787-10798, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33315402

RESUMO

We investigate the oxidation of silver cyanide AgI(CN)2- in water by the OH radical in order to compare this complex with the free cation Ag+ and to measure the influence of the ligands. High-level ab initio calculations of the model species AgII(CN)2· enable the calibration of molecular simulations and the prediction of the oxidized species: AgII(CN)2(H2O)2· and its absorption spectrum, with an intense band at 292 nm and a weaker one at 390 nm. Pulse radiolysis measurements of the oxidation of AgI(CN)2- by the OH radical in water yields a transient species with a broad, intense band at 290 nm and a weaker band at 410 nm at short times after the pulse and a blue shift of the spectrum at longer times. The prediction of the simulations, that the oxidized complex AgII(CN)2(H2O)2· is formed, is confirmed by thermochemistry. Our calculations also suggest that the formation of the OH-adduct is possible only in very basic solution and that the blue shift observed at long times after the pulse is due to disproportionation of the oxidized complex. We also perform molecular simulations of the oxidation of free Ag+ cations by the OH radical. The results are compared to that of the literature and to the results obtained with the AgI(CN)2- complex.

15.
Actual Chim ; 450: 13-18, 2020 Apr.
Artigo em Polonês | MEDLINE | ID: mdl-32747845

RESUMO

DNA damage caused by the dissociative electron attachment (DEA) has been well-studied in the gas and solid phases. However, understanding of this process at the fundamental level in solution is still a challenge. The electrons, after losing their kinetic energy via ionization and excitation events, are thermalized and undergo a multistep hydration process with a time constant of ca. ≤1 ps, to becoming fully trapped as a hydrated or solvated electron (esol - or eaq -). Prior to the formation of esol -, the electron exists in its presolvated (or prehydrated) state (epre -) with no kinetic energy. We used picosecond pulse radiolysis to generate electrons in water or in liquid diethylene glycol (DEG) to observe the dynamics of capture of these electrons by DNA/RNA bases, nucleosides, and nucleotides. Contrary to the hypotheses in the literature that the presolvated electrons (epre -) are captured well by the DNA-nucleosides/tides and the transient negative ions (TNIs) cause strand breaks, we first show that the quasi-free electrons with kinetic energy (eqf -) or epre -cannot be captured by guanine and adenine at very long distances in aqueous solutions with concentrations lower than 50 mM. However, the observation of a substantial decrease in the initial yield of esol - as a function of nucleoside/nucleotide concentrations accompanied by the formation of the nucleotide anion radicals provides direct evidence of an ultrafast step involving radiation-produced electron-mediated DNA damage via DEA. Transient signal analysis suggests that the dissociation channel of TNIs in nucleotide solutions is not even probable up to 0.25 M. On the other hand, in diethylene glycol, we demonstrate that unlike esol - and epre -, eqf - effectively attaches itself to the RNA-nucleoside, ribothymidine, forming the TNI in the excited state (TNI*) that undergoes the N1-C1' glycosidic bond dissociation. Thanks to DEA, this process induced by eqf -, in fact, leads to an oxidation of the parent molecule similar to the hydroxyl radical (•OH) leading to the same glycosidic bond (N1-C1') cleavage.

16.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597345

RESUMO

Among the radicals (hydroxyl radical (•OH), hydrogen atom (H•), and solvated electron (esol-)) that are generated via water radiolysis, •OH has been shown to be the main transient species responsible for radiation damage to DNA via the indirect effect. Reactions of these radicals with DNA-model systems (bases, nucleosides, nucleotides, polynucleotides of defined sequences, single stranded (ss) and double stranded (ds) highly polymeric DNA, nucleohistones) were extensively investigated. The timescale of the reactions of these radicals with DNA-models range from nanoseconds (ns) to microseconds (µs) at ambient temperature and are controlled by diffusion or activation. However, those studies carried out in dilute solutions that model radiation damage to DNA via indirect action do not turn out to be valid in dense biological medium, where solute and water molecules are in close contact (e.g., in cellular environment). In that case, the initial species formed from water radiolysis are two radicals that are ultrashort-lived and charged: the water cation radical (H2O•+) and prethermalized electron. These species are captured by target biomolecules (e.g., DNA, proteins, etc.) in competition with their inherent pathways of proton transfer and relaxation occurring in less than 1 picosecond. In addition, the direct-type effects of radiation, i.e., ionization of macromolecule plus excitations proximate to ionizations, become important. The holes (i.e., unpaired spin or cation radical sites) created by ionization undergo fast spin transfer across DNA subunits. The exploration of the above-mentioned ultrafast processes is crucial to elucidate our understanding of the mechanisms that are involved in causing DNA damage via direct-type effects of radiation. Only recently, investigations of these ultrafast processes have been attempted by studying concentrated solutions of nucleosides/tides under ambient conditions. Recent advancements of laser-driven picosecond electron accelerators have provided an opportunity to address some long-term puzzling questions in the context of direct-type and indirect effects of DNA damage. In this review, we have presented key findings that are important to elucidate mechanisms of complex processes including excess electron-mediated bond breakage and hole transfer, occurring at the single nucleoside/tide level.


Assuntos
Nucleosídeos/química , Radiólise de Impulso , Elétrons , Nucleotídeos/química , Fosfatos/química , Radiação Ionizante , Soluções , Açúcares/química , Água/química
17.
Phys Chem Chem Phys ; 20(23): 15671-15679, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29845125

RESUMO

Picosecond pulse radiolysis measurements were performed in neat D2O and H2O in order to study the isotopic effect on the time-resolved yield of the hydrated electron and hydroxyl radical. First, the absorption band of the hydrated electron in D2O, eD2O-, is measured between 250 and 1500 nm. The molar absorption coefficient of the solvated electron spectrum in D2O was determined using the isosbestic point method by scavenging the solvated electron using methyl viologen. The amplitude and shape of the absorption spectrum of the hydrated electron in D2O are different from those previously reported in the literature. The maximum of the hydrated electron in the D2O absorption band is ca. 704 nm with a molar absorption coefficient of (22 900 ± 500) L mol-1 cm-1. Based on this extinction coefficient, the radiolytic yield of eD2O- just after the 7 ps electron pulse was determined to be (4.4 ± 0.2) × 10-7 mol J-1, which coincides with the one for eH2O- in H2O. The time-dependent radiolytic yield of eD2O- was determined from a few ps to 8 ns. To determine the OD˙ radical yield, the contribution of the solvated electron and of the transient species produced by the electron pulse in the windows of the fused silica optical cell was taken into account for the analysis of the transient absorption measurements at 260 nm. Therefore, an appropriate experimental methodology is used for measuring low absorbance at two different wavelengths in ps pulse radiolysis. The yield of the OD˙ radical just after the 7 ps electron pulse was found to be (5.0 ± 0.2) × 10-7 mol J-1. In the spurs of ionization, the decay rate of eD2O- is slower than eH2O-, whereas the decay rate of OD˙ is similar to the one of OH˙. Here, the established time-dependent yield of the solvated electron and the hydroxyl radical provide the foundation for improving the models used for spur reaction simulations in heavy water mainly for the chemistry of CANDU reactors.

18.
Phys Chem Chem Phys ; 20(21): 14927-14937, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29786710

RESUMO

In irradiated DNA, by the base-to-base and backbone-to-base hole transfer processes, the hole (i.e., the unpaired spin) localizes on the most electropositive base, guanine. Phosphate radicals formed via ionization events in the DNA-backbone must play an important role in the backbone-to-base hole transfer process. However, earlier studies on irradiated hydrated DNA, on irradiated DNA-models in frozen aqueous solution and in neat dimethyl phosphate showed the formation of carbon-centered radicals and not phosphate radicals. Therefore, to model the backbone-to-base hole transfer process, we report picosecond pulse radiolysis studies of the reactions between H2PO4˙ with the DNA bases - G, A, T, and C in 6 M H3PO4 at 22 °C. The time-resolved observations show that in 6 M H3PO4, H2PO4˙ causes the one-electron oxidation of adenine, guanine and thymine, by forming the cation radicals via a single electron transfer (SET) process; however, the rate constant of the reaction of H2PO4˙ with cytosine is too low (<107 L mol-1 s-1) to be measured. The rates of these reactions are influenced by the protonation states and the reorganization energies of the base radicals and of the phosphate radical in 6 M H3PO4.


Assuntos
DNA/química , Fosfatos/química , Sequência de Bases , Citosina/química , Radicais Livres/química , Cinética , Oxirredução , Termodinâmica
19.
Molecules ; 23(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373497

RESUMO

Oxidation reactions by radicals constitute a very important class of chemical reactions in solution. Radiation Chemistry methods allow producing, in a controlled way, very reactive oxidizing radicals, such as OH•, CO3•-, NO3•, SO4•-, and N3•. Although the radical cation of water, H2O•+, with a very short lifetime (shorter than 1 ps) is the precursor of these radicals in aqueous solutions, its chemistry is usually known to be limited to the reaction of proton transfer by forming OH• radical. Herein, we stress situations where H2O•+ undergoes electron transfer reaction in competition with proton transfer.


Assuntos
Elétrons , Prótons , Água/química , Cátions , Radicais Livres , Cinética , Oxirredução , Radiólise de Impulso/instrumentação , Soluções , Fatores de Tempo
20.
Chemphyschem ; 18(19): 2799-2806, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28419652

RESUMO

The reactivity of ethylene carbonate (EC) and of a EC/diethyl carbonate (DEC) mixture was studied under ionizing radiation to mimic the aging phenomena that occur in lithium-ion batteries. Picosecond-pulse radiolysis experiments showed that the attachment of the electron to the EC molecule is ultrafast (k(e-EC +EC)=1.3×109  L mol-1 s-1 at 46 °C). This reaction rate is accelerated by a factor of 5.7 compared with the electron attachment to propylene carbonate, which implies that the presence of the methyl group significantly slows the reaction. In a 50:50 EC/DEC mixture, just after the electron pulse the electron is solvated by a mixture of EC and DEC molecules, but its fast decay is attributed exclusively to electron attachment to the EC molecule. Stable products detected after steady-state irradiation were mainly H2 , CH4 , CO, and CO2 . The evolution of the radiolytic yields with the EC fraction shows that H2 and CH4 did not exhibit linear behavior, whereas CO and CO2 did. Indeed, H2 and CH4 mainly arise from the excited state of DEC, the formation of which is significantly affected by the evolution of the dielectric constant of the mixture and by the electron attachment to EC. CO formation is mainly due to the reactivity of the EC molecule, which is not affected in the mixture, as proven by pulse-radiolysis experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA