Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925080

RESUMO

Pathophysiology of chronic neurodegeneration is mainly based on complex mechanisms related to aberrant signal transduction, excitation/inhibition imbalance, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein misfolding, local insulin resistance and metabolic dysfunction, excessive cell death, development of glia-supported neuroinflammation, and failure of neurogenesis. These mechanisms tightly associate with dramatic alterations in the structure and activity of the neurovascular unit (NVU) and the blood-brain barrier (BBB). NVU is an ensemble of brain cells (brain microvessel endothelial cells (BMECs), astrocytes, pericytes, neurons, and microglia) serving for the adjustment of cell-to-cell interactions, metabolic coupling, local microcirculation, and neuronal excitability to the actual needs of the brain. The part of the NVU known as a BBB controls selective access of endogenous and exogenous molecules to the brain tissue and efflux of metabolites to the blood, thereby providing maintenance of brain chemical homeostasis critical for efficient signal transduction and brain plasticity. In Alzheimer's disease, mitochondria are the target organelles for amyloid-induced neurodegeneration and alterations in NVU metabolic coupling or BBB breakdown. In this review we discuss understandings on mitochondria-driven NVU and BBB dysfunction, and how it might be studied in current and prospective NVU/BBB in vitro models for finding new approaches for the efficient pharmacotherapy of Alzheimer's disease.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Mitocôndrias/fisiologia , Modelos Neurológicos , Degeneração Neural/etiologia , Degeneração Neural/fisiopatologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/fisiopatologia , Animais , Dano ao DNA , DNA Mitocondrial/metabolismo , Humanos , Técnicas In Vitro , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/fisiologia , Espécies Reativas de Oxigênio/metabolismo
2.
Cells ; 11(14)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35883691

RESUMO

Spinocerebellar ataxia type 1 (SCA1) is an intractable progressive neurodegenerative disease that leads to a range of movement and motor defects and is eventually lethal. Purkinje cells (PC) are typically the first to show signs of degeneration. SCA1 is caused by an expansion of the polyglutamine tract in the ATXN1 gene and the subsequent buildup of mutant Ataxin-1 protein. In addition to its toxicity, mutant Ataxin-1 protein interferes with gene expression and signal transduction in cells. Recently, it is evident that ATXN1 is not only expressed in neurons but also in glia, however, it is unclear the extent to which either contributes to the overall pathology of SCA1. There are various ways to model SCA1 in mice. Here, functional deficits at cerebellar synapses were investigated in two mouse models of SCA1 in which mutant ATXN1 is either nonspecifically expressed in all cell types of the cerebellum (SCA1 knock-in (KI)), or specifically in Bergmann glia with lentiviral vectors expressing mutant ATXN1 under the control of the astrocyte-specific GFAP promoter. We report impairment of motor performance in both SCA1 models. In both cases, prominent signs of astrocytosis were found using immunohistochemistry. Electrophysiological experiments revealed alteration of presynaptic plasticity at synapses between parallel fibers and PCs, and climbing fibers and PCs in SCA1 KI mice, which is not observed in animals expressing mutant ATXN1 solely in Bergmann glia. In contrast, short- and long-term synaptic plasticity was affected in both SCA1 KI mice and glia-targeted SCA1 mice. Thus, non-neuronal mechanisms may underlie some aspects of SCA1 pathology in the cerebellum. By combining the outcomes of our current work with our previous data from the B05 SCA1 model, we further our understanding of the mechanisms of SCA1.


Assuntos
Ataxias Espinocerebelares , Animais , Ataxina-1/genética , Ataxina-1/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal , Células de Purkinje , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA