Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38113074

RESUMO

Optimizing and benchmarking data reduction methods for dynamic or spatial visualization and interpretation (DSVI) face challenges due to many factors, including data complexity, lack of ground truth, time-dependent metrics, dimensionality bias and different visual mappings of the same data. Current studies often focus on independent static visualization or interpretability metrics that require ground truth. To overcome this limitation, we propose the MIBCOVIS framework, a comprehensive and interpretable benchmarking and computational approach. MIBCOVIS enhances the visualization and interpretability of high-dimensional data without relying on ground truth by integrating five robust metrics, including a novel time-ordered Markov-based structural metric, into a semi-supervised hierarchical Bayesian model. The framework assesses method accuracy and considers interaction effects among metric features. We apply MIBCOVIS using linear and nonlinear dimensionality reduction methods to evaluate optimal DSVI for four distinct dynamic and spatial biological processes captured by three single-cell data modalities: CyTOF, scRNA-seq and CODEX. These data vary in complexity based on feature dimensionality, unknown cell types and dynamic or spatial differences. Unlike traditional single-summary score approaches, MIBCOVIS compares accuracy distributions across methods. Our findings underscore the joint evaluation of visualization and interpretability, rather than relying on separate metrics. We reveal that prioritizing average performance can obscure method feature performance. Additionally, we explore the impact of data complexity on visualization and interpretability. Specifically, we provide optimal parameters and features and recommend methods, like the optimized variational contractive autoencoder, for targeted DSVI for various data complexities. MIBCOVIS shows promise for evaluating dynamic single-cell atlases and spatiotemporal data reduction models.


Assuntos
Benchmarking , Análise de Célula Única , Teorema de Bayes , Análise de Célula Única/métodos
2.
Hum Genomics ; 18(1): 70, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909264

RESUMO

INTRODUCTION: We previously identified a genetic subtype (C4) of type 2 diabetes (T2D), benefitting from intensive glycemia treatment in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Here, we characterized the population of patients that met the C4 criteria in the UKBiobank cohort. RESEARCH DESIGN AND METHODS: Using our polygenic score (PS), we identified C4 individuals in the UKBiobank and tested C4 status with risk of developing T2D, cardiovascular disease (CVD) outcomes, and differences in T2D medications. RESULTS: C4 individuals were less likely to develop T2D, were slightly older at T2D diagnosis, had lower HbA1c values, and were less likely to be prescribed T2D medications (P < .05). Genetic variants in MAS1 and IGF2R, major components of the C4 PS, were associated with fewer overall T2D prescriptions. CONCLUSION: We have confirmed C4 individuals are a lower risk subpopulation of patients with T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Herança Multifatorial , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Reino Unido/epidemiologia , Herança Multifatorial/genética , Idoso , Fenótipo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/epidemiologia , Predisposição Genética para Doença , Hemoglobinas Glicadas/metabolismo , Hemoglobinas Glicadas/genética , Bancos de Espécimes Biológicos , Polimorfismo de Nucleotídeo Único/genética
3.
Allergy ; 79(3): 643-655, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38263798

RESUMO

BACKGROUND: Adult asthma is complex and incompletely understood. Plasma proteomics is an evolving technique that can both generate biomarkers and provide insights into disease mechanisms. We aimed to identify plasma proteomic signatures of adult asthma. METHODS: Protein abundance in plasma was measured in individuals from the Agricultural Lung Health Study (ALHS) (761 asthma, 1095 non-case) and the Atherosclerosis Risk in Communities study (470 asthma, 10,669 non-case) using the SOMAScan 5K array. Associations with asthma were estimated using covariate adjusted logistic regression and meta-analyzed using inverse-variance weighting. Additionally, in ALHS, we examined phenotypes based on both asthma and seroatopy (asthma with atopy (n = 207), asthma without atopy (n = 554), atopy without asthma (n = 147), compared to neither (n = 948)). RESULTS: Meta-analysis of 4860 proteins identified 115 significantly (FDR<0.05) associated with asthma. Multiple signaling pathways related to airway inflammation and pulmonary injury were enriched (FDR<0.05) among these proteins. A proteomic score generated using machine learning provided predictive value for asthma (AUC = 0.77, 95% CI = 0.75-0.79 in training set; AUC = 0.72, 95% CI = 0.69-0.75 in validation set). Twenty proteins are targeted by approved or investigational drugs for asthma or other conditions, suggesting potential drug repurposing. The combined asthma-atopy phenotype showed significant associations with 20 proteins, including five not identified in the overall asthma analysis. CONCLUSION: This first large-scale proteomics study identified over 100 plasma proteins associated with current asthma in adults. In addition to validating previous associations, we identified many novel proteins that could inform development of diagnostic biomarkers and therapeutic targets in asthma management.


Assuntos
Asma , Hipersensibilidade Imediata , Adulto , Humanos , Proteômica/métodos , Asma/metabolismo , Biomarcadores , Fenótipo , Proteínas Sanguíneas/genética
4.
Environ Res ; 243: 117819, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38052359

RESUMO

BACKGROUND: Farm work entails a heterogeneous mixture of exposures that vary considerably across farms and farmers. Farm work is associated with various health outcomes, both adverse and beneficial. One mechanism by which farming exposures can impact health is through the microbiome, including the indoor home environment microbiome. It is unknown how individual occupational exposures shape the microbial composition in workers' homes. OBJECTIVES: We investigated associations between farm work activities, including specific tasks and pesticide use, and the indoor microbiome in the homes of 468 male farmers. METHODS: Participants were licensed pesticide applicators, mostly farmers, enrolled in the Agricultural Lung Health Study from 2008 to 2011. Vacuumed dust from participants' bedrooms underwent whole-genome shotgun sequencing for indoor microbiome assessment. Using questionnaire data, we evaluated 6 farm work tasks (processing of either hay, silage, animal feed, fertilizer, or soy/grains, and cleaning grain bins) and 19 pesticide ingredients currently used in the past year, plus 7 banned persistent pesticide ingredients ever used. RESULTS: All 6 work tasks were associated with increased microbial diversity levels, with a positive dose-response for the total number of tasks performed (P = 0.001). All tasks were associated with altered microbial compositions (weighted UniFrac P = 0.001) and with higher abundance of specific microbes, including soil-based commensal microbes such as Haloterrigena. Among the 19 pesticides, current use of glyphosate and past use of lindane were associated with increased microbial diversity (P = 0.02-0.04). Ten currently used pesticides and all 7 banned pesticides were associated with altered microbial composition (P = 0.001-0.04). Six pesticides were associated with differential abundance of certain microbes. DISCUSSION: Different farm activities and exposures can uniquely impact the dust microbiome inside homes. Our work suggests that changes to the home microbiome could serve as one pathway for how occupational exposures impact the health of workers and their cohabitating family members, offering possible future intervention targets.


Assuntos
Microbiota , Exposição Ocupacional , Praguicidas , Animais , Humanos , Masculino , Fazendas , Agricultura , Praguicidas/análise , Exposição Ocupacional/análise , Poeira/análise
5.
PLoS Genet ; 17(8): e1009732, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437536

RESUMO

Cancer patients exhibit a broad range of inter-individual variability in response and toxicity to widely used anticancer drugs, and genetic variation is a major contributor to this variability. To identify new genes that influence the response of 44 FDA-approved anticancer drug treatments widely used to treat various types of cancer, we conducted high-throughput screening and genome-wide association mapping using 680 lymphoblastoid cell lines from the 1000 Genomes Project. The drug treatments considered in this study represent nine drug classes widely used in the treatment of cancer in addition to the paclitaxel + epirubicin combination therapy commonly used for breast cancer patients. Our genome-wide association study (GWAS) found several significant and suggestive associations. We prioritized consistent associations for functional follow-up using gene-expression analyses. The NAD(P)H quinone dehydrogenase 1 (NQO1) gene was found to be associated with the dose-response of arsenic trioxide, erlotinib, trametinib, and a combination treatment of paclitaxel + epirubicin. NQO1 has previously been shown as a biomarker of epirubicin response, but our results reveal novel associations with these additional treatments. Baseline gene expression of NQO1 was positively correlated with response for 43 of the 44 treatments surveyed. By interrogating the functional mechanisms of this association, the results demonstrate differences in both baseline and drug-exposed induction.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Farmacológicos/análise , NAD(P)H Desidrogenase (Quinona)/genética , Linhagem Celular Tumoral , Estudo de Associação Genômica Ampla/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , NAD(P)H Desidrogenase (Quinona)/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/metabolismo
6.
Am J Respir Crit Care Med ; 206(3): 321-336, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35536696

RESUMO

Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate, <0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis.


Assuntos
Metilação de DNA , Epigenoma , Ilhas de CpG , Metilação de DNA/genética , Epigênese Genética/genética , Epigenômica , Estudo de Associação Genômica Ampla , Humanos , Recém-Nascido , Pulmão
7.
Bioinformatics ; 37(7): 976-983, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-32966559

RESUMO

MOTIVATION: The recently proposed knockoff filter is a general framework for controlling the false discovery rate (FDR) when performing variable selection. This powerful new approach generates a 'knockoff' of each variable tested for exact FDR control. Imitation variables that mimic the correlation structure found within the original variables serve as negative controls for statistical inference. Current applications of knockoff methods use linear regression models and conduct variable selection only for variables existing in model functions. Here, we extend the use of knockoffs for machine learning with boosted trees, which are successful and widely used in problems where no prior knowledge of model function is required. However, currently available importance scores in tree models are insufficient for variable selection with FDR control. RESULTS: We propose a novel strategy for conducting variable selection without prior model topology knowledge using the knockoff method with boosted tree models. We extend the current knockoff method to model-free variable selection through the use of tree-based models. Additionally, we propose and evaluate two new sampling methods for generating knockoffs, namely the sparse covariance and principal component knockoff methods. We test and compare these methods with the original knockoff method regarding their ability to control type I errors and power. In simulation tests, we compare the properties and performance of importance test statistics of tree models. The results include different combinations of knockoffs and importance test statistics. We consider scenarios that include main-effect, interaction, exponential and second-order models while assuming the true model structures are unknown. We apply our algorithm for tumor purity estimation and tumor classification using Cancer Genome Atlas (TCGA) gene expression data. Our results show improved discrimination between difficult-to-discriminate cancer types. AVAILABILITY AND IMPLEMENTATION: The proposed algorithm is included in the KOBT package, which is available at https://cran.r-project.org/web/packages/KOBT/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Aprendizado de Máquina , Simulação por Computador , Genoma
8.
Environ Res ; 212(Pt D): 113463, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35605674

RESUMO

While multiple factors are associated with cardiovascular disease (CVD), many environmental exposures that may contribute to CVD have not been examined. To understand environmental effects on cardiovascular health, we performed an exposome-wide association study (ExWAS), a hypothesis-free approach, using survey data on endogenous and exogenous exposures at home and work and data from health and medical histories from the North Carolina-based Personalized Environment and Genes Study (PEGS) (n = 5015). We performed ExWAS analyses separately on six cardiovascular outcomes (cardiac arrhythmia, congestive heart failure, coronary artery disease, heart attack, stroke, and a combined atherogenic-related outcome comprising angina, angioplasty, atherosclerosis, coronary artery disease, heart attack, and stroke) using logistic regression and a false discovery rate of 5%. For each CVD outcome, we tested 502 single exposures and built multi-exposure models using the deletion-substitution-addition (DSA) algorithm. To evaluate complex nonlinear relationships, we employed the knockoff boosted tree (KOBT) algorithm. We adjusted all analyses for age, sex, race, BMI, and annual household income. ExWAS analyses revealed novel associations that include blood type A (Rh-) with heart attack (OR[95%CI] = 8.2[2.2:29.7]); paint exposures with stroke (paint related chemicals: 6.1[2.2:16.0], acrylic paint: 8.1[2.6:22.9], primer: 6.7[2.2:18.6]); biohazardous materials exposure with arrhythmia (1.8[1.5:2.3]); and higher paternal education level with reduced risk of multiple CVD outcomes (stroke, heart attack, coronary artery disease, and combined atherogenic outcome). In multi-exposure models, trouble sleeping and smoking remained important risk factors. KOBT identified significant nonlinear effects of sleep disorder, regular intake of grapefruit, and a family history of blood clotting problems for multiple CVD outcomes (combined atherogenic outcome, congestive heart failure, and coronary artery disease). In conclusion, using statistics and machine learning, these findings identify novel potential risk factors for CVD, enable hypothesis generation, provide insights into the complex relationships between risk factors and CVD, and highlight the importance of considering multiple exposures when examining CVD outcomes.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Expossoma , Insuficiência Cardíaca , Infarto do Miocárdio , Acidente Vascular Cerebral , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Humanos , Fatores de Risco , Acidente Vascular Cerebral/epidemiologia , Inquéritos e Questionários
9.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142363

RESUMO

Children conceived with assisted reproductive technology (ART) have an increased risk of adverse outcomes, including congenital malformations and imprinted gene disorders. In a retrospective North Carolina-based-birth-cohort, we examined the effect of ovulation drugs and ART on CpG methylation in differentially methylated CpGs in known imprint control regions (ICRs). Nine ICRs containing 48 CpGs were assessed for methylation status by pyrosequencing in mixed leukocytes from cord blood. After restricting to non-smoking, college-educated participants who agreed to follow-up, ART-exposed (n = 27), clomifene-only-exposed (n = 22), and non-exposed (n = 516) groups were defined. Associations of clomifene and ART with ICR CpG methylation were assessed with linear regression and stratifying by offspring sex. In males, ART was associated with hypomethylation of the PEG3 ICR [ß(95% CI) = -1.46 (-2.81, -0.12)] and hypermethylation of the MEG3 ICR [3.71 (0.01, 7.40)]; clomifene-only was associated with hypomethylation of the NNAT ICR [-5.25 (-10.12, -0.38)]. In female offspring, ART was associated with hypomethylation of the IGF2 ICR [-3.67 (-6.79, -0.55)]. Aberrant methylation of these ICRs has been associated with cardiovascular disease and metabolic and behavioral outcomes in children. The results suggest that the increased risk of adverse outcomes in offspring conceived through ART may be due in part to altered methylation of ICRs. Larger studies utilizing epigenome-wide interrogation are warranted.


Assuntos
Clomifeno , Impressão Genômica , Criança , Metilação de DNA , Feminino , Humanos , Masculino , Técnicas de Reprodução Assistida/efeitos adversos , Estudos Retrospectivos
10.
Pharmacogenet Genomics ; 31(2): 48-52, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32941389

RESUMO

The use of ex-vivo model systems to provide a level of forecasting for in-vivo characteristics remains an important need for cancer therapeutics. The use of lymphoblastoid cell lines (LCLs) is an attractive approach for pharmacogenomics and toxicogenomics, due to their scalability, efficiency, and cost-effectiveness. There is little data on the impact of demographic or clinical covariates on LCL response to chemotherapy. Paclitaxel sensitivity was determined in LCLs from 93 breast cancer patients from the University of North Carolina Lineberger Comprehensive Cancer Center Breast Cancer Database to test for potential associations and/or confounders in paclitaxel dose-response assays. Measures of paclitaxel cell viability were associated with patient data included treatment regimens, cancer status, demographic and environmental variables, and clinical outcomes. We used multivariate analysis of variance to identify the in-vivo variables associated with ex-vivo dose-response. In this unique dataset that includes both in-vivo and ex-vivo data from breast cancer patients, race (P = 0.0049) and smoking status (P = 0.0050) were found to be significantly associated with ex-vivo dose-response in LCLs. Racial differences in clinical dose-response have been previously described, but the smoking association has not been reported. Our results indicate that in-vivo smoking status can influence ex-vivo dose-response in LCLs, and more precise measures of covariates may allow for more precise forecasting of clinical effect. In addition, understanding the mechanism by which exposure to smoking in-vivo effects ex-vivo dose-response in LCLs may open up new avenues in the quest for better therapeutic prediction.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Paclitaxel/farmacologia , Grupos Raciais/genética , Fumar/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Pessoa de Meia-Idade , Paclitaxel/efeitos adversos , Farmacogenética , Fumar/efeitos adversos
11.
Small ; 16(21): e2000299, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32227433

RESUMO

Silver nanoparticles (AgNPs) are widely incorporated into consumer and biomedical products for their antimicrobial and plasmonic properties with limited risk assessment of low-dose cumulative exposure in humans. To evaluate cellular responses to low-dose AgNP exposures across time, human liver cells (HepG2) are exposed to AgNPs with three different surface charges (1.2 µg mL-1 ) and complete gene expression is monitored across a 24 h period. Time and AgNP surface chemistry mediate gene expression. In addition, since cells are fed, time has marked effects on gene expression that should be considered. Surface chemistry of AgNPs alters gene transcription in a time-dependent manner, with the most dramatic effects in cationic AgNPs. Universal to all surface coatings, AgNP-treated cells responded by inactivating proliferation and enabling cell cycle checkpoints. Further analysis of these universal features of AgNP cellular response, as well as more detailed analysis of specific AgNP treatments, time points, or specific genes, is facilitated with an accompanying application. Taken together, these results provide a foundation for understanding hepatic response to low-dose AgNPs for future risk assessment.


Assuntos
Expressão Gênica , Hepatócitos , Nanopartículas Metálicas , Prata , Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Propriedades de Superfície , Fatores de Tempo
12.
PLoS Comput Biol ; 15(2): e1006722, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30779729

RESUMO

Rare variants are of increasing interest to genetic association studies because of their etiological contributions to human complex diseases. Due to the rarity of the mutant events, rare variants are routinely analyzed on an aggregate level. While aggregation analyses improve the detection of global-level signal, they are not able to pinpoint causal variants within a variant set. To perform inference on a localized level, additional information, e.g., biological annotation, is often needed to boost the information content of a rare variant. Following the observation that important variants are likely to cluster together on functional domains, we propose a protein structure guided local test (POINT) to provide variant-specific association information using structure-guided aggregation of signal. Constructed under a kernel machine framework, POINT performs local association testing by borrowing information from neighboring variants in the 3-dimensional protein space in a data-adaptive fashion. Besides merely providing a list of promising variants, POINT assigns each variant a p-value to permit variant ranking and prioritization. We assess the selection performance of POINT using simulations and illustrate how it can be used to prioritize individual rare variants in PCSK9, ANGPTL4 and CETP in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) clinical trial data.


Assuntos
Biologia Computacional/métodos , Estudos de Associação Genética/métodos , Análise de Sequência de DNA/métodos , Proteína 4 Semelhante a Angiopoietina/genética , Proteínas de Transferência de Ésteres de Colesterol/genética , Simulação por Computador , Predisposição Genética para Doença/genética , Variação Genética/genética , Humanos , Modelos Genéticos , Pró-Proteína Convertase 9/genética , Estrutura Terciária de Proteína , Fatores de Risco
13.
Pharmacogenet Genomics ; 26(4): 147-153, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26731477

RESUMO

OBJECTIVE: The capacity of the Affymetrix drug metabolism enzymes and transporters (DMET) Plus pharmacogenomics genotyping chip to estimate population substructure and cryptic relatedness was evaluated. The results were compared with estimates using genome-wide HapMap data for the same individuals. METHODS: For 301 unrelated individuals, spanning three continental populations and one admixed population, genotypic data were collected using the Affymetrix DMET Plus microarray. Genome-wide data on these individuals were obtained from HapMap release 3. Population substructure was assessed using Eigenstrat and ADMIXTURE software for both platforms. Cryptic relatedness was explored by inbreeding coefficient estimation. Nonparametric tests were used to determine correlations of the analytical results of the two genotyping platforms. RESULTS: Principal components analysis identified population substructure for both datasets, with 15.8 and 16.6% of the total variance explained in the first two principal components for DMET Plus and HapMap data, respectively. ADMIXTURE results correctly identified four subpopulations within each dataset. Nonparametric rank correlations indicated significant associations between analyses with an average ρ=0.7272 (P<10) across the three continental populations and ρ=0.4888 for the admixed population. Concordance correlation coefficients (average ρc=0.9693 across all four subpopulations) strongly indicate concordance between ADMIXTURE results. Inbreeding coefficients were slightly inflated (16 individuals>0.15) using DMET Plus data and no cryptic relatedness was indicated using HapMap data. The inflated inbreeding estimation could be because of the limited number of markers provided by DMET as a random sample of 1832 markers from HapMap also yielded inflated estimates of cryptic relatedness (39 individuals>0.15). Furthermore, use of single nucleotide polymorphisms located in genes involved in metabolism and transport may have different allele frequencies in subpopulations than single nucleotide polymorphisms sampled from the whole genome. CONCLUSION: The DMET Plus pharmacogenomics genotyping chip is effective in quantifying population substructure across the three continental populations and inferring the presence of an admixed population. On the basis of our results, these microarrays offer sufficient depth for covariate adjustment of population substructure in genomic association studies.

14.
J Proteome Res ; 14(10): 4394-401, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26347193

RESUMO

An early-stage, population-wide biomarker for ovarian cancer (OVC) is essential to reverse its high mortality rate. Aberrant glycosylation by OVC has been reported, but studies have yet to identify an N-glycan with sufficiently high specificity. We curated a human biorepository of 82 case-control plasma samples, with 27%, 12%, 46%, and 15% falling across stages I-IV, respectively. For relative quantitation, glycans were analyzed by the individuality normalization when labeling with glycan hydrazide tags (INLIGHT) strategy for enhanced electrospray ionization, MS/MS analysis. Sixty-three glycan cancer burden ratios (GBRs), defined as the log10 ratio of the case-control extracted ion chromatogram abundances, were calculated above the limit of detection. The final GBR models, built using stepwise forward regression, included three significant terms: OVC stage, normalized mean GBR, and tag chemical purity; glycan class, fucosylation, or sialylation were not significant variables. After Bonferroni correction, seven N-glycans were identified as significant (p < 0.05), and after false discovery rate correction, an additional four glycans were determined to be significant (p < 0.05), with one borderline (p = 0.05). For all N-glycans, the vectors of the effects from stages II-IV were sequentially reversed, suggesting potential biological changes in OVC morphology or in host response.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/diagnóstico , Polissacarídeos/sangue , Sequência de Carboidratos , Estudos de Casos e Controles , Cromatografia Líquida/métodos , Feminino , Fucose/sangue , Glicosilação , Humanos , Hidrazinas/química , Dados de Sequência Molecular , Estadiamento de Neoplasias , Neoplasias Ovarianas/patologia , Ácidos Siálicos/sangue , Coloração e Rotulagem/métodos , Espectrometria de Massas em Tandem/métodos
15.
Breast Cancer Res Treat ; 145(1): 245-54, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24706167

RESUMO

The development of paclitaxel-induced peripheral neuropathy (PIPN) is influenced by drug exposure and patient genetics. The purpose of this analysis was to expand on a previous reported association of CYP2C8*3 and PIPN risk by investigating additional polymorphisms in CYP2C8 and in hundreds of other genes potentially relevant to paclitaxel pharmacokinetics. Clinical data was collected prospectively in an observational registry of newly diagnosed breast cancer patients. Patients treated with paclitaxel-containing regimens were genotyped using the Affymetrix DMET™ Plus chip. Patients who carried the CYP2C8*2, *3, or *4 variant were collapsed into a low-metabolizer CYP2C8 phenotype for association with PIPN. Separately, all SNPs that surpassed quality control were assessed individually and as a composite of genetic ancestry for associations with PIPN. 412 paclitaxel-treated patients and 564 genetic markers were included in the analysis. The risk of PIPN was significantly greater in the CYP2C8 low-metabolizer group (HR = 1.722, p = 0.018); however, the influences of the *2 and *4 SNPs were not independently significant (*2: p = 0.847, *4: p = 0.408). One intronic SNP in ABCG1 (rs492338) surpassed the exploratory significance threshold for an association with PIPN in the Caucasian cohort (p = 0.0008) but not in the non-Caucasian replication group (p = 0.54). Substantial genetic variability was observed within self-reported racial groups but this genetic variability was not associated with risk of grade 2+ PIPN. The pharmacogenetic heterogeneity within a cohort of breast cancer patients is dramatic, though we did not find evidence that this heterogeneity directly influences the risk of PIPN beyond the contribution of CYP2C8*3.


Assuntos
Antineoplásicos/efeitos adversos , Neoplasias da Mama/genética , Citocromo P-450 CYP2C8/genética , Resistencia a Medicamentos Antineoplásicos/genética , Predisposição Genética para Doença/genética , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/uso terapêutico , Feminino , Heterogeneidade Genética , Genótipo , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Paclitaxel/uso terapêutico , Doenças do Sistema Nervoso Periférico/genética , Polimorfismo de Nucleotídeo Único , Adulto Jovem
16.
Vet Anaesth Analg ; 41(1): 48-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23889820

RESUMO

OBJECTIVE: The current prevalence of onychectomy (declawing) in cats is unknown, and education regarding the procedure appears to vary greatly among veterinary schools. The purpose of this project was to determine the prevalence of onychectomized cats near Raleigh, NC and to document the frequency and style (laboratory or lecture) with which the procedure is taught in USA veterinary schools. ANIMALS: One thousand seven hundred ninety four cats ranging in age from 8 days to 21 years, of which 938 (52.3%) were female and 1719 (95.8%) were sterilized. METHODS: Data were collected over a 10-week period regarding cats seen for appointments in five veterinary facilities (two cat-only, two general, and one tertiary). Data collection included signalment and onychectomy status. During this time, 28 veterinary schools were polled regarding education of veterinary students in onychectomy. RESULTS: Three hundred and seventy four (20.8%) cats had undergone onychectomy. A significantly higher percentage of declawed cats were seen in the general practices compared with the other practice types (p < 0.030). Younger cats had a higher rate of onychectomy (p < 0.001). Twenty-six veterinary schools responded to the survey (93%). Fourteen (54%) of the responding schools did not include in their core curriculum a lecture or surgical laboratory providing instruction in the onychectomy procedure. CONCLUSIONS AND CLINICAL RELEVANCE: Almost 21% of cats seen in veterinary hospitals near Raleigh, NC were declawed. Less than 50% of veterinary schools in the USA include a mandatory lecture or laboratory to teach the procedure. There appears to be a discrepancy between the popularity of the onychectomy procedure and the emphasis placed on relevant instruction in veterinary schools in the USA.


Assuntos
Gatos/cirurgia , Educação em Veterinária , Casco e Garras/cirurgia , Procedimentos Cirúrgicos Operatórios/veterinária , Animais , Feminino , Masculino , North Carolina , Procedimentos Cirúrgicos Operatórios/educação
17.
Comput Toxicol ; 292024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38872937

RESUMO

The Toxicological Prioritization Index (ToxPi) is a visual analysis and decision support tool for dimension reduction and visualization of high throughput, multi-dimensional feature data. ToxPi was originally developed for assessing the relative toxicity of multiple chemicals or stressors by synthesizing complex toxicological data to provide a single comprehensive view of the potential health effects. It continues to be used for profiling chemicals and has since been applied to other types of "sample" entities, including geospatial (e.g. county-level Covid-19 risk and sites of historical PFAS exposure) and other profiling applications. For any set of features (data collected on a set of sample entities), ToxPi integrates the data into a set of weighted slices that provide a visual profile and a score metric for comparison. This scoring system is highly dependent on user-provided feature weights, yet users often lack knowledge of how to define these feature weights. Common methods for predicting feature weights are generally unusable due to inappropriate statistical assumptions and lack of global distributional expectation. However, users often have an inherent understanding of expected results for a small subset of samples. For example, in chemical toxicity, prior knowledge can often place subsets of chemicals into categories of low, moderate or high toxicity (reference chemicals). Ordinal regression can be used to predict weights based on these response levels that are applicable to the entire feature set, analogous to using positive and negative controls to contextualize an empirical distribution. We propose a semi-supervised method utilizing ordinal regression to predict a set of feature weights that produces the best fit for the known response ("reference") data and subsequently fine-tunes the weights via a customized genetic algorithm. We conduct a simulation study to show when this method can improve the results of ordinal regression, allowing for accurate feature weight prediction and sample ranking in scenarios with minimal response data. To ground-truth the guided weight optimization, we test this method on published data to build a ToxPi model for comparison against expert-knowledge-driven weight assignments.

18.
Exposome ; 4(1): osae003, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425336

RESUMO

The correlations among individual exposures in the exposome, which refers to all exposures an individual encounters throughout life, are important for understanding the landscape of how exposures co-occur, and how this impacts health and disease. Exposome-wide association studies (ExWAS), which are analogous to genome-wide association studies (GWAS), are increasingly being used to elucidate links between the exposome and disease. Despite increased interest in the exposome, tools and publications that characterize exposure correlations and their relationships with human disease are limited, and there is a lack of data and results sharing in resources like the GWAS catalog. To address these gaps, we developed the PEGS Explorer web application to explore exposure correlations in data from the diverse North Carolina-based Personalized Environment and Genes Study (PEGS) that were rigorously calculated to account for differing data types and previously published results from ExWAS. Through globe visualizations, PEGS Explorer allows users to explore correlations between exposures found to be associated with complex diseases. The exposome data used for analysis includes not only standard environmental exposures such as point source pollution and ozone levels but also exposures from diet, medication, lifestyle factors, stress, and occupation. The web application addresses the lack of accessible data and results sharing, a major challenge in the field, and enables users to put results in context, generate hypotheses, and, importantly, replicate findings in other cohorts. PEGS Explorer will be updated with additional results as they become available, ensuring it is an up-to-date resource in exposome science.

19.
Exposome ; 4(1): osae002, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450326

RESUMO

The exposome collectively refers to all exposures, beginning in utero and continuing throughout life, and comprises not only standard environmental exposures such as point source pollution and ozone levels but also exposures from diet, medication, lifestyle factors, stress, and occupation. The exposome interacts with individual genetic and epigenetic characteristics to affect human health and disease, but large-scale studies that characterize the exposome and its relationships with human disease are limited. To address this gap, we used extensive questionnaire data from the diverse North Carolina-based Personalized Environment and Genes Study (PEGS, n = 9, 429) to evaluate exposure associations in relation to common diseases. We performed an exposome-wide association study (ExWAS) to examine single exposure models and their associations with 11 common complex diseases, namely allergic rhinitis, asthma, bone loss, fibroids, high cholesterol, hypertension, iron-deficient anemia, ovarian cysts, lower GI polyps, migraines, and type 2 diabetes. Across diseases, we found associations with lifestyle factors and socioeconomic status as well as asbestos, various dust types, biohazardous material, and textile-related exposures. We also found disease-specific associations such as fishing with lead weights and migraines. To differentiate between a replicated result and a novel finding, we used an AI-based literature search and database tool that allowed us to examine the current literature. We found both replicated findings, especially for lifestyle factors such as sleep and smoking across diseases, and novel findings, especially for occupational exposures and multiple diseases.

20.
Cell Genom ; 4(7): 100591, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38925123

RESUMO

Understanding the complex interplay of genetic and environmental factors in disease etiology and the role of gene-environment interactions (GEIs) across human development stages is important. We review the state of GEI research, including challenges in measuring environmental factors and advantages of GEI analysis in understanding disease mechanisms. We discuss the evolution of GEI studies from candidate gene-environment studies to genome-wide interaction studies (GWISs) and the role of multi-omics in mediating GEI effects. We review advancements in GEI analysis methods and the importance of large-scale datasets. We also address the translation of GEI findings into precision environmental health (PEH), showcasing real-world applications in healthcare and disease prevention. Additionally, we highlight societal considerations in GEI research, including environmental justice, the return of results to participants, and data privacy. Overall, we underscore the significance of GEI for disease prediction and prevention and advocate for integrating the exposome into PEH omics studies.


Assuntos
Saúde Ambiental , Interação Gene-Ambiente , Medicina de Precisão , Humanos , Medicina de Precisão/métodos , Estudo de Associação Genômica Ampla , Exposição Ambiental/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA