Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38438258

RESUMO

Acetylcholine (ACh) is released from basal forebrain cholinergic neurons in response to salient stimuli and engages brain states supporting attention and memory. These high ACh states are associated with theta oscillations, which synchronize neuronal ensembles. Theta oscillations in the basolateral amygdala (BLA) in both humans and rodents have been shown to underlie emotional memory, yet their mechanism remains unclear. Here, using brain slice electrophysiology in male and female mice, we show large ACh stimuli evoke prolonged theta oscillations in BLA local field potentials that depend upon M3 muscarinic receptor activation of cholecystokinin (CCK) interneurons (INs) without the need for external glutamate signaling. Somatostatin (SOM) INs inhibit CCK INs and are themselves inhibited by ACh, providing a functional SOM→CCK IN circuit connection gating BLA theta. Parvalbumin (PV) INs, which can drive BLA oscillations in baseline states, are not involved in the generation of ACh-induced theta, highlighting that ACh induces a cellular switch in the control of BLA oscillatory activity and establishes an internally BLA-driven theta oscillation through CCK INs. Theta activity is more readily evoked in BLA over the cortex or hippocampus, suggesting preferential activation of the BLA during high ACh states. These data reveal a SOM→CCK IN circuit in the BLA that gates internal theta oscillations and suggest a mechanism by which salient stimuli acting through ACh switch the BLA into a network state enabling emotional memory.


Assuntos
Acetilcolina , Colecistocinina , Camundongos Endogâmicos C57BL , Ritmo Teta , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologia , Animais , Masculino , Camundongos , Feminino , Acetilcolina/farmacologia , Acetilcolina/metabolismo , Colecistocinina/farmacologia , Colecistocinina/metabolismo , Interneurônios/fisiologia , Interneurônios/efeitos dos fármacos , Somatostatina/metabolismo , Somatostatina/farmacologia , Tonsila do Cerebelo/fisiologia , Tonsila do Cerebelo/efeitos dos fármacos , Complexo Nuclear Basolateral da Amígdala/fisiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Rede Nervosa/fisiologia , Rede Nervosa/efeitos dos fármacos , Receptor Muscarínico M3/fisiologia , Receptor Muscarínico M3/metabolismo , Parvalbuminas/metabolismo
2.
J Neurosci ; 43(5): 722-735, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535767

RESUMO

The amygdalar anterior basolateral nucleus (BLa) plays a vital role in emotional behaviors. This region receives dense cholinergic projections from basal forebrain which are critical in regulating neuronal activity in BLa. Cholinergic signaling in BLa has also been shown to modulate afferent glutamatergic inputs to this region. However, these studies, which have used cholinergic agonists or prolonged optogenetic stimulation of cholinergic fibers, may not reflect the effect of physiological acetylcholine release in the BLa. To better understand these effects of acetylcholine, we have used electrophysiology and optogenetics in male and female mouse brain slices to examine cholinergic regulation of afferent BLa input from cortex and midline thalamic nuclei. Phasic ACh release evoked by single pulse stimulation of cholinergic terminals had a biphasic effect on transmission at cortical input, producing rapid nicotinic receptor-mediated facilitation followed by slower mAChR-mediated depression. In contrast, at this same input, sustained ACh elevation through application of the cholinesterase inhibitor physostigmine suppressed glutamatergic transmission through mAChRs only. This suppression was not observed at midline thalamic nuclei inputs to BLa. In agreement with this pathway specificity, the mAChR agonist, muscarine more potently suppressed transmission at inputs from prelimbic cortex than thalamus. Muscarinic inhibition at prelimbic cortex input required presynaptic M4 mAChRs, while at thalamic input it depended on M3 mAChR-mediated stimulation of retrograde endocannabinoid signaling. Muscarinic inhibition at both pathways was frequency-dependent, allowing only high-frequency activity to pass. These findings demonstrate complex cholinergic regulation of afferent input to BLa that is pathway-specific and frequency-dependent.SIGNIFICANCE STATEMENT Cholinergic modulation of the basolateral amygdala regulates formation of emotional memories, but the underlying mechanisms are not well understood. Here, we show, using mouse brain slices, that ACh differentially regulates afferent transmission to the BLa from cortex and midline thalamic nuclei. Fast, phasic ACh release from a single optical stimulation biphasically regulates glutamatergic transmission at cortical inputs through nicotinic and muscarinic receptors, suggesting that cholinergic neuromodulation can serve precise, computational roles in the BLa. In contrast, sustained ACh elevation regulates cortical input through muscarinic receptors only. This muscarinic regulation is pathway-specific with cortical input inhibited more strongly than midline thalamic nuclei input. Specific targeting of these cholinergic receptors may thus provide a therapeutic strategy to bias amygdalar processing and regulate emotional memory.


Assuntos
Acetilcolina , Complexo Nuclear Basolateral da Amígdala , Camundongos , Animais , Masculino , Feminino , Acetilcolina/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Receptores Colinérgicos/metabolismo , Tálamo/fisiologia , Colinérgicos/farmacologia , Receptores Muscarínicos/metabolismo , Transmissão Sináptica/fisiologia
3.
Proc Natl Acad Sci U S A ; 116(42): 21176-21184, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31575739

RESUMO

As the inhibitory γ-aminobutyric acid-ergic (GABAergic) transmission has a pivotal role in the central nervous system (CNS) and defective forms of its synapses are associated with serious neurological disorders, numerous versions of caged GABA and, more recently, photoswitchable ligands have been developed to investigate such transmission. While the complementary nature of these probes is evident, the mechanisms by which the GABA receptors can be photocontrolled have not been fully exploited. In fact, the ultimate need for specificity is critical for the proper synaptic exploration. No caged allosteric modulators of the GABAA receptor have been reported so far; to introduce such an investigational approach, we exploited the structural motifs of the benzodiazepinic scaffold to develop a photocaged version of diazepam (CD) that was tested on basolateral amygdala (BLa) pyramidal cells in mouse brain slices. CD is devoid of any intrinsic activity toward the GABAA receptor before irradiation. Importantly, CD is a photoreleasable GABAA receptor-positive allosteric modulator that offers a different probing mechanism compared to caged GABA and photoswitchable ligands. CD potentiates the inhibitory signaling by prolonging the decay time of postsynaptic GABAergic currents upon photoactivation. Additionally, no effect on presynaptic GABA release was recorded. We developed a photochemical technology to individually study the GABAA receptor, which specifically expands the toolbox available to study GABAergic synapses.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Diazepam/farmacologia , Receptores de GABA-A/metabolismo , Sinapses/metabolismo , Tonsila do Cerebelo/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Potenciais Sinápticos/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
4.
J Neurosci Res ; 95(3): 797-820, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26876924

RESUMO

The amygdalar nuclear complex and hippocampal/parahippocampal region are key components of the limbic system that play a critical role in emotional learning and memory. This Review discusses what is currently known about the neuroanatomy and neurotransmitters involved in amygdalo-hippocampal interconnections, their functional roles in learning and memory, and their involvement in mnemonic dysfunctions associated with neuropsychiatric and neurological diseases. Tract tracing studies have shown that the interconnections between discrete amygdalar nuclei and distinct layers of individual hippocampal/parahippocampal regions are robust and complex. Although it is well established that glutamatergic pyramidal cells in the amygdala and hippocampal region are the major players mediating interconnections between these regions, recent studies suggest that long-range GABAergic projection neurons are also involved. Whereas neuroanatomical studies indicate that the amygdala only has direct interconnections with the ventral hippocampal region, electrophysiological studies and behavioral studies investigating fear conditioning and extinction, as well as amygdalar modulation of hippocampal-dependent mnemonic functions, suggest that the amygdala interacts with dorsal hippocampal regions via relays in the parahippocampal cortices. Possible pathways for these indirect interconnections, based on evidence from previous tract tracing studies, are discussed in this Review. Finally, memory disorders associated with dysfunction or damage to the amygdala, hippocampal region, and/or their interconnections are discussed in relation to Alzheimer's disease, posttraumatic stress disorder (PTSD), and temporal lobe epilepsy. © 2016 Wiley Periodicals, Inc.


Assuntos
Tonsila do Cerebelo/anatomia & histologia , Hipocampo/anatomia & histologia , Aprendizagem/fisiologia , Vias Neurais/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Hipocampo/fisiologia , Humanos , Neuroanatomia
5.
J Neurosci ; 32(37): 12928-33, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22973017

RESUMO

Kainate receptors can be subject to voltage-dependent block by intracellular polyamines, which causes inward rectification of the current-voltage relationship. Sensitivity to polyamine block is largely determined by the identity of a residue within the pore domain that can be altered through RNA editing. This process causes replacement of the encoded glutamine(Q) with a positively charged arginine(R), eliminating polyamine inhibition and thus inward rectification. In neurons, kainate receptors can associate with the auxiliary subunits Neto1 or Neto2. These transmembrane proteins alter the trafficking, channel kinetics, and pharmacology of the receptors in a subunit-dependent manner. We found that coexpression of Neto subunits with recombinant GluK2(Q) kainate receptors greatly reduced inward rectification without altering calcium permeability. This effect was separate from modulation of channel kinetics, as mutations within the extracellular LDLa domain of the Neto proteins completely eliminated their effects on desensitization but only reduced their effects on rectification. Conversely, deletion of the intracellular C-terminal domain of Neto1 or Neto2 or neutralization of positively charged residues within this domain prevented the reduction in rectification but did not alter effects on channel kinetics. These results demonstrate new roles for Neto1 and Neto2 in regulating kainate receptor function and identify domains within these auxiliary subunits important for mediating their effects.


Assuntos
Cálcio/metabolismo , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Subunidades Proteicas , Receptores de N-Metil-D-Aspartato , Relação Estrutura-Atividade
6.
J Physiol ; 591(19): 4711-24, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23798491

RESUMO

The ionotropic glutamate receptors are primary mediators of fast excitatory neurotransmission, and their properties are determined both by their subunit composition and their association with auxiliary subunits. The neuropilin and tolloid-like 1 and 2 proteins (Neto1 and Neto2) have been recently identified as auxiliary subunits for kainate-type glutamate receptors. Heteromeric kainate receptors (KARs) can be assembled from varying combinations of low-affinity (GluK1-GluK3) and high-affinity (GluK4-GluK5) subunits. To better understand the functional impact of auxiliary subunits on KARs, we examined the effect of Neto1 on the responses of recombinant homomeric and heteromeric KARs to varying concentrations of glutamate. We found that co-expression of Neto1 with homomeric GluK2 receptors had a small effect on sensitivity of the receptors to glutamate, but decreased the onset of desensitization while speeding recovery from desensitization. In the absence of Neto1, addition of GluK5 subunits to form GluK2/GluK5 heteromeric receptors slowed the onset of desensitization at low glutamate concentrations, compared with GluK2 homomers. Co-expression of Neto1 with GluK2/GluK5 receptors further enhanced these effects, essentially eliminating desensitization at µm glutamate concentrations without altering the EC50 for activation by glutamate. In addition, a prominent rebound current was observed upon removal of the agonist. The rate of recovery from desensitization was increased to the same degree by Neto1 for both homomeric GluK2 and heteromeric GluK2/GluK5 receptors. Expression of Neto1 with GluK1/GluK5, GluK3/GluK5 or GluK2/GluK4 receptors produced qualitatively similar effects on whole-cell currents, suggesting that the impact of Neto1 on the desensitization properties of heteromeric receptors was not subunit dependent. These results provide greater insight into the functional effects of the auxiliary subunit Neto1 on both homomeric and heteromeric KARs. Alteration of the characteristics of desensitization at both sub-maximal and saturating glutamate concentrations could influence the responsiveness of these receptors to repeated stimuli. As a result, assembly of KARs with the Neto auxiliary subunits could change the kinetic properties of the neuronal response to glutamatergic input.


Assuntos
Proteínas de Membrana/metabolismo , Multimerização Proteica , Receptores de Ácido Caínico/metabolismo , Potenciais de Ação , Animais , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato
7.
Epilepsia ; 54 Suppl 6: 103-5, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24001087

RESUMO

Benzodiazepines (BZDs), which enhance γ-aminobutyric acid (GABAA ) receptor-mediated inhibition, are the first-line therapy for treatment of status epilepticus (SE). However, pharmacoresistance to BZDs develops rapidly after SE initiation. This is due to an activity-dependent internalization of BZD-sensitive GABAA receptors during SE. Stiripentol (STP) is a positive allosteric modulator of GABAA receptors with a unique subunit selectivity profile. We report that in a rodent model of SE, STP terminates behavioral seizures and remains effective in established SE when seizures have become BZD resistant. The anticonvulsant effects of STP are age dependent, with greater potency in juvenile animals. Whole cell recordings from dentate granule cells in hippocampal slices reveal that STP potentiates GABAergic inhibitory postsynaptic currents (IPSCs) and tonic GABAergic currents by acting at a site on the GABAA receptor that is separate from the benzodiazepine binding site. This potentiation persists in established SE, whereas potentiation of GABAergic inhibition by BZDs is lost. STP potentiates IPSCs in juvenile animals with greater potency than in adult animals. We suggest that STP, either alone or as add-on therapy, may prove useful in treating established and BZD-resistant status epilepticus. Furthermore, STP may be particularly effective in terminating SE in children when SE is most prevalent.


Assuntos
Anticonvulsivantes/uso terapêutico , Dioxolanos/uso terapêutico , Receptores de GABA-A/efeitos dos fármacos , Estado Epiléptico/tratamento farmacológico , Animais , Anticonvulsivantes/metabolismo , Benzodiazepinas/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA/efeitos dos fármacos , Receptores de GABA/metabolismo , Receptores de GABA-A/metabolismo , Estado Epiléptico/induzido quimicamente
8.
J Neurosci ; 31(47): 17113-22, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22114280

RESUMO

Kainate receptors (KARs) have been implicated in a number of neurological disorders, including epilepsy. KARs are tetrameric, composed of a combination of GluK1-GluK5 subunits. We examined the contribution of GluK2 and GluK5 subunits to activation and desensitization of the heteromeric receptor. Heteromeric GluK2/K5 receptors expressed in HEK-293T cells showed markedly higher glutamate sensitivity than GluK2 homomers and did not desensitize at low glutamate concentrations. Mutation of residue E738 in GluK2 substantially lowered its glutamate sensitivity. However, heteromeric KARs containing this mutant GluK2 [GluK2(E738D)] assembled with wild-type GluK5 showed no change in glutamate EC(50) compared with wild-type heteromeric KARs. Instead, higher concentrations of glutamate were required to produce desensitization. This suggested that, within the heteromeric receptor, glutamate binding to the high-affinity GluK5 subunit alone was sufficient for channel activation but not desensitization, whereas agonist binding to the low-affinity GluK2 subunit was not necessary to open the channel but instead caused the channel to enter a closed, desensitized state. To test this hypothesis in wild-type receptors, we used the competitive antagonist kynurenate, which has higher affinity for the GluK2 than the GluK5 subunit. Coapplication of kynurenate with glutamate to heteromeric receptors reduced the onset of desensitization without affecting the peak current response, consistent with our hypothesis. Our results suggest that GluK2 and GluK5 subunits can be individually activated within the heteromeric receptor and that these subunits serve dramatically different functional roles.


Assuntos
Receptores de Ácido Caínico/fisiologia , Animais , Regulação da Expressão Gênica , Ácido Glutâmico/fisiologia , Células HEK293 , Humanos , Ácido Cinurênico/farmacologia , Multimerização Proteica/genética , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Ratos , Receptores de Ácido Caínico/biossíntese , Receptores de Ácido Caínico/genética , Receptor de GluK2 Cainato
9.
J Comp Neurol ; 529(10): 2450-2463, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33410202

RESUMO

The basolateral nuclear complex (BNC) of the amygdala plays an important role in the generation of emotional/motivational behavior and the consolidation of emotional memories. Activation of M1 cholinergic receptors (M1Rs) in the BNC is critical for memory consolidation. Previous receptor binding studies in the monkey amygdala demonstrated that the BNC has a high density of M1Rs, but did not have sufficient resolution to identify which neurons in the BNC expressed them. This was accomplished in the present immunohistochemical investigation using an antibody for the m1 receptor (m1R). Analysis of m1Rs in the monkey BNC using immunoperoxidase techniques revealed that their expression was very dense in the BNC, and suggested that virtually all of the pyramidal projection neurons (PNs) in all of the BNC nuclei were m1R-immunoreactive (m1R+). This was confirmed with dual-labeling immunofluorescence using staining for calcium/calmodulin-dependent protein kinase II (CaMK) as a marker for BNC PNs. However, additional dual-labeling studies indicated that one-third of inhibitory interneurons (INs) expressing glutamic acid decarboxylase (GAD) were also m1R+. Moreover, the finding that 60% of parvalbumin (PV) immunoreactive neurons were m1R+ indicated that this IN subpopulation was the main GAD+ subpopulation exhibiting m1R expression. The cholinergic innervation of the amygdala is greatly reduced in Alzheimer's disease and there is currently considerable interest in developing selective M1R positive allosteric modulators (PAMs) to treat the symptoms. The results of the present study indicate that M1Rs in both PNs and INs in the primate BNC would be targeted by M1R PAMs.


Assuntos
Complexo Nuclear Basolateral da Amígdala/metabolismo , Neurônios/metabolismo , Receptor Muscarínico M1/metabolismo , Animais , Feminino , Macaca mulatta , Masculino
10.
J Physiol ; 588(Pt 4): 683-700, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20026616

RESUMO

Kainate receptor subunits can form functional channels as homomers of GluK1, GluK2 or GluK3, or as heteromeric combinations with each other or incorporating GluK4 or GluK5 subunits. However, GluK4 and GluK5 cannot form functional channels by themselves. Incorporation of GluK4 or GluK5 into a heteromeric complex increases glutamate apparent affinity and also enables receptor activation by the agonist AMPA. Utilizing two-electrode voltage clamp of Xenopus oocytes injected with cRNA encoding kainate receptor subunits, we have observed that heteromeric channels composed of GluK2/GluK4 and GluK2/GluK5 have steady state concentration-response curves that were bell-shaped in response to either glutamate or AMPA. By contrast, homomeric GluK2 channels exhibited a monophasic steady state concentration-response curve that simply plateaued at high glutamate concentrations. By fitting several specific Markov models to GluK2/GluK4 heteromeric and GluK2 homomeric concentration-response data, we have determined that: (a) two strikingly different agonist binding affinities exist; (b) the high-affinity binding site leads to channel opening; and (c) the low-affinity agonist binding site leads to strong desensitization after agonist binding. Model parameters also approximate the onset and recovery kinetics of desensitization observed for macroscopic currents measured from HEK-293 cells expressing GluK2 and GluK4 subunits. The GluK2(E738D) mutation lowers the steady state apparent affinity for glutamate by 9000-fold in comparison to GluK2 homomeric wildtype receptors. When this mutant subunit was expressed with GluK4, the rising phase of the glutamate steady state concentration-response curve overlapped with the wildtype curve, whereas the declining phase was right-shifted toward lower affinity. Taken together, these data are consistent with a scheme whereby high-affinity agonist binding to a non-desensitizing GluK4 subunit opens the heteromeric channel, whereas low-affinity agonist binding to GluK2 desensitizes the whole channel complex.


Assuntos
Receptores de Ácido Caínico/fisiologia , Animais , Sítios de Ligação/fisiologia , Ácido Glutâmico/fisiologia , Cadeias de Markov , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Receptores de Ácido Caínico/genética , Xenopus laevis
11.
J Neurosci ; 28(7): 1659-71, 2008 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-18272686

RESUMO

Kainate receptors contribute to synaptic plasticity and rhythmic oscillatory firing of neurons in corticolimbic circuits including hippocampal area CA3. We use zinc chelators and mice deficient in zinc transporters to show that synaptically released zinc inhibits postsynaptic kainate receptors at mossy fiber synapses and limits frequency facilitation of kainate, but not AMPA EPSCs during theta-pattern stimulation. Exogenous zinc also inhibits the facilitatory modulation of mossy fiber axon excitability by kainate but does not suppress the depressive effect of kainate on CA3 axons. Recombinant kainate receptors are inhibited in a subunit-dependent manner by physiologically relevant concentrations of zinc, with receptors containing the KA1 subunit being sensitive to submicromolar concentrations of zinc. Zinc inhibition does not alter receptor desensitization nor apparent agonist affinity and is only weakly voltage dependent, which points to an allosteric mechanism. Zinc inhibition is reduced at acidic pH. Thus, in the presence of zinc, a fall in pH potentiates kainate receptors by relieving zinc inhibition. Acidification of the extracellular space, as occurs during repetitive activity, may therefore serve to unmask kainate receptor neurotransmission. We conclude that zinc modulation of kainate receptors serves an important role in shaping kainate neurotransmission in the CA3 region.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Fibras Musgosas Hipocampais/metabolismo , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/fisiologia , Zinco/farmacologia , Zinco/fisiologia , Animais , Quelantes/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Mutantes , Fibras Musgosas Hipocampais/efeitos dos fármacos , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Xenopus
13.
Brain Res ; 1722: 146349, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31348911

RESUMO

Although it is known that acetylcholine acting through M1 muscarinic receptors (M1Rs) is essential for memory consolidation in the anterior basolateral nucleus of the amygdala (BLa), virtually nothing is known about the circuits involved. In the hippocampus M1R activation facilitates long-term potentiation (LTP) by potentiating NMDA glutamate receptor (NMDAR) currents. The majority of NMDAR+ profiles in the BLa are spines. Since about half of dendritic spines of BLa pyramidal neurons (PNs) receiving glutamatergic inputs are M1R-immunoreactive (M1R+) it is possible that the role of M1Rs in BLa mnemonic functions also involves potentiation of NMDAR currents in spines. However, the finding that only about half of BLa spines are M1R+ suggests that this proposed mechanism may only apply to a subset of glutamatergic inputs. As a first step in the identification of differential glutamatergic inputs to M1R+ spines in the BLa, the present electron microscopic study used antibodies to two different vesicular glutamate transporter proteins (VGluTs) to label two different subsets of glutamatergic inputs to M1R+ spines. These inputs are largely complimentary with VGluT1+ inputs arising mainly from cortical structures and the basolateral nucleus, and VGluT2+ inputs arising mainly from the thalamus. It was found that about one-half of the spines that were postsynaptic to VGluT1+ or VGluT2+ terminals were M1R+. In addition, a subset of the VGluT1+ or VGluT2+ axon terminals were M1R+, including those that synapsed with M1R+ spines. These results suggest that acetylcholine can modulate glutamatergic inputs to BLa spines by presynaptic as well as postsynaptic M1R-mediated mechanisms.


Assuntos
Complexo Nuclear Basolateral da Amígdala/ultraestrutura , Neurônios/ultraestrutura , Receptor Muscarínico M1/análise , Proteína Vesicular 1 de Transporte de Glutamato/análise , Proteína Vesicular 2 de Transporte de Glutamato/análise , Animais , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Masculino , Camundongos , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura
14.
Brain Res ; 1208: 67-73, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18387600

RESUMO

Synaptic strengthening produced by epileptiform activity may contribute to seizure progression and cognitive impairment in epilepsy. Agents that limit this form of plasticity may have therapeutic benefit. Neuregulin is an endogenous growth factor that is released at synapses in an activity dependent manner and can suppress long term potentiation (LTP). Alterations in neuregulin signaling have been associated with schizophrenia. A role for neuregulin in epilepsy has not been explored. We used field potential recordings to examine the role of neuregulin in regulating synaptic strengthening following epileptiform activity in hippocampal slices. Neuregulin had no effect on basal synaptic transmission, isolated NMDA field potentials or GABAergic inhibition on CA1 pyramidal neurons. However, it reversed LTP at CA1 synapses. Brief exposure to 10 mM potassium chloride produced epileptiform bursting and potentiation of CA1 synapses and suppressed the subsequent induction of LTP. Neuregulin reversed high K(+)-induced synaptic strengthening, enabling LTP induction after neuregulin washout. In this manner neuregulin preserved the dynamic range of synaptic responses and plasticity after epileptiform activity. These results indicate that LTP and high K(+)-induced synaptic strengthening share a common neuregulin-sensitive mechanism. By opposing synaptic strengthening caused by epileptiform activity, we suggest that neuregulin may reduce the generation and spread of seizures as well as memory deficits associated with epilepsy.


Assuntos
Epilepsia/fisiopatologia , Hipocampo/fisiologia , Neurregulinas/farmacologia , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Bicuculina/análogos & derivados , Bicuculina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Hipocampo/citologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Potenciação de Longa Duração/efeitos da radiação , Masculino , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/efeitos da radiação , Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
16.
Neuroscience ; 357: 349-362, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28629847

RESUMO

The basolateral amygdala receives a very dense cholinergic innervation from the basal forebrain that is important for memory consolidation. Although behavioral studies have shown that both M1 and M2 muscarinic receptors are critical for these mnemonic functions, there have been very few neuroanatomical and electrophysiological investigations of the localization and function of different types of muscarinic receptors in the amygdala. In the present study we investigated the subcellular localization of M2 muscarinic receptors (M2Rs) in the anterior basolateral nucleus (BLa) of the mouse, including the localization of M2Rs in parvalbumin (PV) immunoreactive interneurons, using double-labeling immunoelectron microscopy. Little if any M2R-immunoreactivity (M2R-ir) was observed in neuronal somata, but the neuropil was densely labeled. Ultrastructural analysis using a pre-embedding immunogold-silver technique (IGS) demonstrated M2R-ir in dendritic shafts, spines, and axon terminals forming asymmetrical (excitatory) or symmetrical (mostly inhibitory) synapses. In addition, about one-quarter of PV+ axon terminals and half of PV+ dendrites, localized using immunoperoxidase, were M2R+ when observed in single thin sections. In all M2R+ neuropilar structures, including those that were PV+, about one-quarter to two-thirds of M2R+ immunoparticles were plasma-membrane-associated, depending on the structure. The expression of M2Rs in PV+ and PV-negative terminals forming symmetrical synapses indicates M2R modulation of inhibitory transmission. Electrophysiological studies in mouse and rat brain slices, including paired recordings from interneurons and pyramidal projection neurons, demonstrated M2R-mediated suppression of GABA release. These findings suggest cell-type-specific functions of M2Rs and shed light on organizing principles of cholinergic modulation in the BLa.


Assuntos
Axônios/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Dendritos/metabolismo , Receptor Muscarínico M2/metabolismo , Sinapses/metabolismo , Animais , Axônios/ultraestrutura , Complexo Nuclear Basolateral da Amígdala/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Dendritos/ultraestrutura , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Masculino , Camundongos da Linhagem 129 , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Células Piramidais/ultraestrutura , Ratos Sprague-Dawley , Sinapses/ultraestrutura , Técnicas de Cultura de Tecidos
17.
Trends Neurosci ; 26(9): 484-8, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12948659

RESUMO

The field of interneuron research has come of age. An influx of new data has shed light on many areas, but has also highlighted major challenges. The articles in this review series will address several of these challenges, including developing a standardized classification scheme, defining how the integrative properties of interneurons shape their functional roles (including the generation of oscillatory activity), and identifying molecular mechanisms of synaptic plasticity. New technologies can help us address these problems in ways not previously possible. To coordinate the vast amount of data being generated, we propose the creation of a world-wide-web Interneuron Database that will facilitate inter-laboratory comparisons and collaborative studies. A well-crafted database has the potential to bring new insight by standardizing and organizing data collected in physiological, anatomical and molecular studies.


Assuntos
Interneurônios , Inibição Neural , Animais , Sistema Nervoso Central/fisiologia , Bases de Dados como Assunto/organização & administração , Interneurônios/classificação , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Plasticidade Neuronal
18.
J Comp Neurol ; 524(12): 2400-17, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-26779591

RESUMO

Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R-ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R-negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R(+) ). Some M2R(+) dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R-ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R(+) terminals forming asymmetrical (putative excitatory) synapses were dendritic spines, most of which were M2R(+) . The main targets of M2R(+) terminals forming symmetrical (putative inhibitory or neuromodulatory) synapses were unlabeled perikarya and M2R(+) dendritic shafts. M2R-ir was also seen in VAChT(+) cholinergic terminals, indicating a possible autoreceptor role. These findings suggest that M2R-mediated mechanisms in the BLa are very complex, involving postsynaptic effects in dendrites as well as regulating release of glutamate, γ-aminobutyric acid, and acetylcholine from presynaptic axon terminals. J. Comp. Neurol. 524:2400-2417, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Complexo Nuclear Basolateral da Amígdala/ultraestrutura , Neurônios Colinérgicos/ultraestrutura , Dendritos/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Receptor Muscarínico M2/ultraestrutura , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Neurônios Colinérgicos/metabolismo , Dendritos/metabolismo , Masculino , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Muscarínico M2/biossíntese
19.
J Neurosci ; 23(4): 1179-88, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12598606

RESUMO

Synaptic activity causes significant fluctuations in proton concentrations in the brain. Changes in pH can affect neuronal excitability by acting on ligand-gated channels, including those gated by glutamate. We show here a subunit-dependent regulation of native and recombinant kainate receptors by physiologically relevant proton concentrations. The effect of protons on kainate receptors is voltage-independent and subunit dependent, with GluR5(Q), GluR6(Q), GluR6(R), and GluR6(R)/KA2 receptors being inhibited and GluR6(R)/KA1 receptors being potentiated. Mutation of two acidic residues (E396 and E397) to neutral amino acids significantly reduces the proton sensitivity of the GluR6(Q) receptor, suggesting that these residues influence proton inhibition. The endogenous polyamine spermine potentiated GluR6(R) kainate currents in a pH-dependent manner, producing an acidic shift in the IC(50) for proton inhibition. Spermine potentiation of GluR6(R) is voltage independent, does not affect receptor desensitization, and only slightly shifts the agonist affinity of the receptor. These results suggest that, similar to its action on NMDA receptors, spermine potentiates kainate receptors by relieving proton inhibition of the receptor. Furthermore, they suggest that fluctuations in brain pH during both normal and pathological processes could regulate synaptic transmission and plasticity mediated by kainate receptors.


Assuntos
Hipocampo/fisiologia , Poliaminas/farmacologia , Prótons , Receptores de Ácido Caínico/antagonistas & inibidores , Receptores de Ácido Caínico/fisiologia , Animais , Linhagem Celular , Células Cultivadas , Sinergismo Farmacológico , Condutividade Elétrica , Hipocampo/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Mutação , Técnicas de Patch-Clamp , Subunidades Proteicas , Ratos , Ratos Sprague-Dawley , Receptores de Ácido Caínico/agonistas , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/genética , Proteínas Recombinantes/antagonistas & inibidores , Xenopus , Receptor de GluK2 Cainato
20.
Diabetes ; 64(11): 3927-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26216852

RESUMO

Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS-treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS-treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control.


Assuntos
Hipocampo/metabolismo , Resistência à Insulina/fisiologia , Plasticidade Neuronal/fisiologia , Receptor de Insulina/genética , Aprendizagem Espacial/fisiologia , Animais , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Receptor de Insulina/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA