Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 123(3): 568-580, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34981854

RESUMO

Recent advances in targeted treatment for cholangiocarcinoma have focused on fibroblast growth factor (FGF) signaling. There are four receptor tyrosine kinases that respond to FGFs, and posttranslational processing has been demonstrated for each FGF receptor. Here, we investigated the role of N-linked glycosylation on the processing and function of FGFR4. We altered glycosylation through enzymatic deglycosylation, small molecule inhibition of glycosyltransferases, or through site-directed mutagenesis of selected asparagine residues in FGFR4. Signaling was tested through caspase activation, migration, and subcellular localization of FGFR4. Our data demonstrate that FGFR4 has multiple glycoforms, with predominant bands relating to the full-length receptor that has a high mannose- or hybrid-type form and a complex-type glycan form. We further identified a set of faster migrating FGFR4 bands that correspond to the intracellular kinase domain, termed FGFR4 intracellular domain (R4-ICD). These glycoforms and R4-ICD were detected in human cholangiocarcinoma tumor samples, where R4-ICD was predominant. Removal of glycans in intact cells by enzymatic deglycosylation resulted in increased processing to R4-ICD. Inhibition of glycosylation using NGI-1, an oligosaccharyltransferase inhibitor, reduced both high mannose- or hybrid- and complex-type glycan forms of FGFR4, increased processing and sensitized to apoptosis. Mutation of Asn-112, Asn-258, Asn-290, or Asn-311 to glutamine modestly reduced apoptosis resistance, while mutation of Asn-322 or simultaneous mutation of the other four asparagine residues caused a loss of cytoprotection by FGFR4. None of the glycomutants altered the migration of cancer cells. Finally, mutation of Asn-112 caused a partial localization of FGFR4 to the Golgi. Overall, preventing glycosylation at individual residues reduced the cell survival function of FGFR4 and receptor glycosylation may regulate access to an extracellular protease or proteolytic susceptibility of FGFR4.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Asparagina/genética , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Glicosilação , Humanos , Manose/metabolismo , Polissacarídeos/química , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo
2.
Clin Anat ; 35(7): 953-960, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35527395

RESUMO

In this report, the authors examine the integration of teaching anatomical science with clinical implications in minimally invasive surgery. The authors hypothesized that implementation of integrated laparoscopic simulation during undergraduate medical education would improve student learning of anatomical structures from in situ, laparoscopic orientations; and subsequently improve student preparation for clinical rotations and clerkships. During the fall of 2020 and 2021, 260 (130 students/year) second year medical students at the University of Nebraska Medical Center participated in a six-week gastrointestinal curriculum. Following a traditional anatomy dissection experience, students completed a laparoscopic event consisting of narrated laparoscopic videos and hands-on laparoscopic simulation. To examine the integrated curricular event, outcome measures focused on technical performance using grasping forceps, anatomical knowledge, and perception of the educational innovation. Outcomes were analyzed via timed performance and a pre and post assessment that was designed to assess student anatomical knowledge and perception. Completion of the technical performance assessment ranged from 1 min, 17 s to 6 min. Student knowledge of anatomical structures from in situ, laparoscopic orientations following the laparoscopic simulation sessions was significantly improved (53.3% pre vs 81.0% post), and almost all students (98.9%) agreed that the simulation sessions improved their understanding of laparoscopic anatomy and procedures. This report demonstrates the implementation of a multidisciplinary, integrated simulation that satisfied basic science anatomy teaching objectives, while enhancing student enthusiasm for the content. Future studies will examine the subsequent impact of the innovation on student preparedness for clinical rotations and clerkships.


Assuntos
Anatomia , Educação de Graduação em Medicina , Laparoscopia , Estudantes de Medicina , Anatomia/educação , Currículo , Dissecação/educação , Educação de Graduação em Medicina/métodos , Avaliação Educacional , Humanos
3.
RNA Biol ; 15(3): 391-403, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29286255

RESUMO

MicroRNA dysregulation is a common feature of cancer and due to the promiscuity of microRNA binding this can result in a wide array of genes whose expression is altered. miR-106b is an oncomiR overexpressed in cholangiocarcinoma and its upregulation in this and other cancers often leads to repression of anti-tumorigenic targets. The goal of this study was to identify the miR-106b-regulated gene landscape in cholangiocarcinoma cells using a genome-wide, unbiased mRNA analysis. Through RNA-Seq we found 112 mRNAs significantly repressed by miR-106b. The majority of these genes contain the specific miR-106b seed-binding site. We have validated 11 genes from this set at the mRNA level and demonstrated regulation by miR-106b of 7 proteins. Combined analysis of our miR-106b-regulated mRNA data set plus published reports indicate that miR-106b binding is anchored by G:C pairing in and near the seed. Novel targets Kruppel-like factor 2 (KLF2) and KLF6 were verified both at the mRNA and at the protein level. Further investigation showed regulation of four other KLF family members by miR-106b. We have discovered coordinated repression of multiple members of the KLF family by miR-106b that may play a role in cholangiocarcinoma tumor biology.


Assuntos
Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Regulação para Baixo , Fatores de Transcrição Kruppel-Like/genética , MicroRNAs/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/química , Fatores de Transcrição Kruppel-Like/metabolismo , Ratos , Análise de Sequência de RNA/métodos
4.
J Lipid Res ; 58(5): 866-875, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28250026

RESUMO

Nonalcoholic steatohepatitis (NASH) patients have elevated plasma saturated free fatty acid levels. These toxic fatty acids can induce liver cell death and our recent results demonstrated that the biliary epithelium may be susceptible to lipotoxicity. Here, we explored the molecular mechanisms of cholangiocyte lipoapoptosis in cell culture and in an animal model of NASH. Treatment of cholangiocytes with palmitate (PA) showed increased caspase 3/7 activity and increased levels of cleaved poly (ADP-ribose) polymerase and cleaved caspase 3, demonstrating cholangiocyte lipoapoptosis. Interestingly, treatment with PA significantly increased the levels of microRNA miR-34a, a pro-apoptotic microRNA known to be elevated in NASH. PA induction of miR-34a was abolished in cholangiocytes transduced with forkhead family of transcription factor class O (FoxO)3 shRNA, demonstrating that FoxO3 activation is upstream of miR-34a and suggesting that FoxO3 is a novel transcriptional regulator of miR-34a. Further, anti-miR-34a protected cholangiocytes from PA-induced lipoapoptosis. Direct and indirect targets of miR-34a, such as SIRT1, receptor tyrosine kinase (MET), Kruppel-like factor 4, fibroblast growth factor receptor (FGFR)1, and FGFR4, were all decreased in PA-treated cholangiocytes. SIRT1 and MET were partially rescued by a miR-34a antagonist. Cholangiocyte apoptosis and miR-34a were dramatically increased in the liver of mice with early histologic features of NASH. Our study provides evidence for the pro-apoptotic role of miR-34a in PA-induced cholangiocyte lipoapoptosis in culture and in the liver.


Assuntos
Apoptose/efeitos dos fármacos , Ductos Biliares/citologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , MicroRNAs/genética , Palmitatos/farmacologia , Animais , Linhagem Celular , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Endogâmicos C57BL
5.
J Cell Biochem ; 118(7): 1678-1688, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27922192

RESUMO

Pipecolate, an intermediate of the lysine catabolic pathway, is oxidized to Δ1 -piperideine-6-carboxylate (P6C) by the flavoenzyme l-pipecolate oxidase (PIPOX). P6C spontaneously hydrolyzes to generate α-aminoadipate semialdehyde, which is then converted into α-aminoadipate acid by α-aminoadipatesemialdehyde dehydrogenase. l-pipecolate was previously reported to protect mammalian cells against oxidative stress. Here, we examined whether PIPOX is involved in the mechanism of pipecolate stress protection. Knockdown of PIPOX by small interference RNA abolished pipecolate protection against hydrogen peroxide-induced cell death in HEK293 cells suggesting a critical role for PIPOX. Subcellular fractionation analysis showed that PIPOX is localized in the mitochondria of HEK293 cells consistent with its role in lysine catabolism. Signaling pathways potentially involved in pipecolate protection were explored by treating cells with small molecule inhibitors. Inhibition of both mTORC1 and mTORC2 kinase complexes or inhibition of Akt kinase alone blocked pipecolate protection suggesting the involvement of these signaling pathways. Phosphorylation of the Akt downstream target, forkhead transcription factor O3 (FoxO3), was also significantly increased in cells treated with pipecolate, further implicating Akt in the protective mechanism and revealing FoxO3 inhibition as a potentially key step. The results presented here demonstrate that pipecolate metabolism can influence cell signaling during oxidative stress to promote cell survival and suggest that the mechanism of pipecolate protection parallels that of proline, which is also metabolized in the mitochondria. J. Cell. Biochem. 118: 1678-1688, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Peróxido de Hidrogênio/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Sobrevivência Celular/fisiologia , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Células HEK293/metabolismo , Humanos , NADP/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Via de Pentose Fosfato , Ácidos Pipecólicos/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , Sarcosina Oxidase/genética , Sarcosina Oxidase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
6.
J Biol Chem ; 290(40): 24178-89, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26304124

RESUMO

Iron is implicated in fatty liver disease pathogenesis. The human hepcidin gene, HAMP, is the master switch of iron metabolism. The aim of this study is to investigate the regulation of HAMP expression by fatty acids in HepG2 cells. For these studies, both saturated fatty acids (palmitic acid (PA) and stearic acid (SA)) and unsaturated fatty acid (oleic acid (OA)) were used. PA and, to a lesser extent, SA, but not OA, up-regulated HAMP mRNA levels, as determined by real-time PCR. To understand whether PA regulates HAMP mRNA at the transcriptional or post-transcriptional level, the transcription inhibitor actinomycin D was employed. PA-mediated induction of HAMP mRNA expression was not blocked by actinomycin D. Furthermore, PA activated HAMP 3'-UTR, but not promoter, activity, as shown by reporter assays. HAMP 3'-UTR harbors a single AU-rich element (ARE). Mutation of this ARE abolished the effect of PA, suggesting the involvement of ARE-binding proteins. The ARE-binding protein human antigen R (HuR) stabilizes mRNA through direct interaction with AREs on 3'-UTR. HuR is regulated by phosphorylation-mediated nucleo-cytoplasmic shuttling. PA activated this process. The binding of HuR to HAMP mRNA was also induced by PA in HepG2 cells. Silencing of HuR by siRNA abolished PA-mediated up-regulation of HAMP mRNA levels. PKC is known to phosphorylate HuR. Staurosporine, a broad-spectrum PKC inhibitor, inhibited both PA-mediated translocation of HuR and induction of HAMP expression. Similarly, rottlerin, a novel class PKC inhibitor, abrogated PA-mediated up-regulation of HAMP expression. In conclusion, lipids mediate post-transcriptional regulation of HAMP throughPKC- and HuR-dependent mechanisms.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Ácidos Graxos/química , Fígado Gorduroso/metabolismo , Hepcidinas/metabolismo , Ácido Palmítico/química , Processamento Pós-Transcricional do RNA , Regiões 3' não Traduzidas , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células Hep G2 , Hepcidinas/genética , Humanos , Ferro/química , Camundongos , Mutagênese , Mutação , Fosforilação , Ligação Proteica , Transporte Proteico , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
7.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G930-40, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27056722

RESUMO

Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1ß, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.


Assuntos
Acetaldeído/metabolismo , Apoptose , Hepacivirus/fisiologia , Hepatócitos/metabolismo , Replicação Viral , Linhagem Celular , Células Cultivadas , Hepacivirus/patogenicidade , Hepatócitos/virologia , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Mol Pharm ; 13(3): 1073-80, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26855082

RESUMO

Cholangiocarcinoma is the second most common primary liver malignancy with extremely poor prognosis due to early invasion and widespread metastasis. The invasion and metastasis are regulated by multiple factors including CXCR4 chemokine receptor and multiple microRNAs. The goal of this study was to test the hypothesis that inhibition of CXCR4 combined with the action of miR-200c mimic will cooperatively enhance the inhibition of the invasion of human cholangiocarcinoma cells. The results show that CXCR4-inhibition polycation PCX can effectively deliver miR-200c mimic and that the combination treatment consisting of PCX and miR-200c results in cooperative antimigration activity, most likely by coupling the CXCR4 axis blockade with epithelial-to-mesenchymal transition inhibition in the cholangiocarcinoma cells. The ability of the combined PCX/miR-200c treatment to obstruct two migratory pathways represents a promising antimetastatic strategy in cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos/efeitos dos fármacos , Colangiocarcinoma/tratamento farmacológico , Sistemas de Liberação de Medicamentos , MicroRNAs/genética , Poliaminas/química , Receptores CXCR4/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Benzilaminas , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Ciclamos , Quimioterapia Combinada , Compostos Heterocíclicos/farmacologia , Humanos , MicroRNAs/administração & dosagem , Invasividade Neoplásica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
9.
Semin Liver Dis ; 35(1): 3-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25632930

RESUMO

In considering an overview of microRNA biology, it is useful to consider microRNAs as a part of cellular communication. At the simplest level, microRNAs act to decrease the expression of messenger RNAs that contain stretches of sequence complementary to the microRNA. This function can be likened to the function of endogenous or synthetic short interfering RNA. However, microRNA function is more complicated and nuanced than this "on-off" model would suggest. Further, many microRNA targets are themselves noncoding RNAs. In this review, the authors discuss the role of microRNAs in shaping the proteome of the cell in a way that is consistent with microRNA involvement in a highly regulated conversation, sensitive to outside influence and internal feedback.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica , Marcadores Genéticos , MicroRNAs/genética , Processamento Pós-Transcricional do RNA , Ribonucleoproteínas , Humanos , MicroRNAs/fisiologia , Polimorfismo de Nucleotídeo Único
10.
Hepatology ; 60(6): 1942-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24753158

RESUMO

UNLABELLED: Recent studies have identified a cholestatic variant of nonalcoholic fatty liver disease (NAFLD) with portal inflammation and ductular reaction. Based on reports of biliary damage, as well as increased circulating free fatty acids (FFAs) in NAFLD, we hypothesized the involvement of cholangiocyte lipoapoptosis as a mechanism of cellular injury. Here, we demonstrate that the saturated FFAs palmitate and stearate induced robust and rapid cell death in cholangiocytes. Palmitate and stearate induced cholangiocyte lipoapoptosis in a concentration-dependent manner in multiple cholangiocyte-derived cell lines. The mechanism of lipoapoptosis relied on the activation of caspase 3/7 activity. There was also a significant up-regulation of the proapoptotic BH3-containing protein, PUMA. In addition, palmitate-induced cholangiocyte lipoapoptosis involved a time-dependent increase in the nuclear localization of forkhead family of transcription factor 3 (FoxO3). We show evidence for posttranslational modification of FoxO3, including early (6 hours) deacetylation and dephosphorylation that coincide with localization of FoxO3 in the nuclear compartment. By 16 hours, nuclear FoxO3 is both phosphorylated and acetylated. Knockdown studies confirmed that FoxO3 and its downstream target, PUMA, were critical for palmitate- and stearate-induced cholangiocyte lipoapoptosis. Interestingly, cultured cholangiocyte-derived cells did not accumulate appreciable amounts of neutral lipid upon FFA treatment. CONCLUSION: Our data show that the saturated FFAs palmitate and stearate induced cholangiocyte lipoapoptosis by way of caspase activation, nuclear translocation of FoxO3, and increased proapoptotic PUMA expression. These results suggest that cholangiocyte injury may occur through lipoapoptosis in NAFLD and nonalcoholic steatohepatitis patients.


Assuntos
Apoptose , Ductos Biliares Intra-Hepáticos/enzimologia , Ácidos Graxos não Esterificados/efeitos adversos , Fígado Gorduroso/etiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática , Fígado Gorduroso/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Humanos , Palmitatos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
11.
Med Sci Educ ; 34(1): 37-41, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38510402

RESUMO

Descriptive studies regarding how to integrate diversity, equity, and inclusion (DEI) into medical education are lacking. We utilized the AAMC's Key Steps for Assessing Institutional Culture and Climate framework to evaluate our current curriculum via listening tours (n = 34 participants) and a survey of the 10 pre-clinical block directors, to better understand the opportunities and challenges of improving DEI in the pre-clinical curriculum. Opportunities included diversifying cases and standardized patients, enhancing information on systemic racism and social determinants of health, and increasing racial humility and population genetics/epigenetics training. Faculty had issues with "correct ways" to incorporate DEI and time constraints. Supplementary Information: The online version contains supplementary material available at 10.1007/s40670-023-01924-7.

12.
Cell Death Dis ; 15(1): 31, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212315

RESUMO

Maternal obesity increases the risk of childhood obesity and programs the offspring to develop metabolic syndrome later in their life. Palmitate is the predominant saturated free fatty acid (FFA) that is transported across the placenta to the fetus. We have recently shown that saturated FFA in the maternal circulation as a result of increased adipose tissue lipolysis in third trimester of pregnancy induces trophoblast lipoapoptosis. Here, we hypothesized that palmitate induces integrated stress response by activating mitogen-activated protein kinases (MAPKs), endoplasmic reticulum (ER) stress and granular stress and lipoapoptosis in trophoblasts. Choriocarcinoma-derived third-trimester placental trophoblast-like cells (JEG-3 and JAR) referred as trophoblasts were exposed to various concentrations of palmitate (PA). Apoptosis was assessed by nuclear morphological changes and caspase 3/7 activity. Immunoblot and immunofluorescence analysis was performed to measure the activation of MAPKs, ER stress and granular stress response pathways. Trophoblasts exposed to pathophysiological concentrations of PA showed a concentration-dependent increase in trophoblast lipoapoptosis. PA induces a caspase-dependent trophoblast lipoapoptosis. Further, PA induces MAPK activation (JNK and ERK) via phosphorylation, and activation of ER stress as evidenced by an increased phosphorylation eIF2α & IRE1α. PA also induces the activation of stress granules formation. Two pro-apoptotic transcriptional mediators of PA-induced trophoblast lipoapoptosis, CHOP and FoxO3 have increased nuclear translocation. Mechanistically, PA-induced JNK is critical for trophoblast lipoapoptosis. However, PA-induced activation of ERK and stress granule formation were shown to be cell survival signals to combat subcellular stress due to PA exposure. In conclusion, PA induces the activation of integrated stress responses, among which small molecule inhibition of JNK demonstrated that activation of JNK is critical for PA-induced trophoblast lipoapoptosis and small molecule activation of stress granule formation significantly prevents PA-induced trophoblast lipoapoptosis.


Assuntos
Palmitatos , Obesidade Infantil , Criança , Feminino , Humanos , Gravidez , Palmitatos/farmacologia , Palmitatos/metabolismo , Linhagem Celular Tumoral , Endorribonucleases , Placenta/metabolismo , Proteínas Serina-Treonina Quinases , Apoptose , Proteínas Quinases Ativadas por Mitógeno , Estresse do Retículo Endoplasmático , Trofoblastos/metabolismo
13.
Hepatology ; 55(2): 465-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21953056

RESUMO

UNLABELLED: It has been established that microRNA expression and function contribute to phenotypic features of malignant cells, including resistance to apoptosis. Although targets and functional roles for a number of microRNAs have been described in cholangiocarcinoma, many additional microRNAs dysregulated in this tumor have not been assigned functional roles. In this study, we identify elevated miR-25 expression in malignant cholangiocarcinoma cell lines as well as patient samples. In cultured cells, treatment with the Smoothened inhibitor, cyclopamine, reduced miR-25 expression, suggesting Hedgehog signaling stimulates miR-25 production. Functionally, miR-25 was shown to protect cells against TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Correspondingly, antagonism of miR-25 in culture sensitized cells to apoptotic death. Computational analysis identified the TRAIL Death Receptor-4 (DR4) as a potential novel miR-25 target, and this prediction was confirmed by immunoblot, cell staining, and reporter assays. CONCLUSION: These data implicate elevated miR-25 levels in the control of tumor cell apoptosis in cholangiocarcinoma. The identification of the novel miR-25 target DR4 provides a mechanism by which miR-25 contributes to evasion of TRAIL-induced cholangiocarcinoma apoptosis.


Assuntos
Apoptose , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/metabolismo , MicroRNAs/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proteínas Hedgehog/metabolismo , Humanos , Transdução de Sinais
14.
J Biol Chem ; 286(45): 39336-48, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21941003

RESUMO

Nonalcoholic steatohepatitis is characterized by hepatic steatosis, elevated levels of circulating free fatty acids (FFA), endoplasmic reticulum (ER) stress, and hepatocyte lipoapoptosis. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor 5 (DR5) is significantly elevated in patients with nonalcoholic steatohepatitis, and steatotic hepatocytes demonstrate increased sensitivity to TRAIL-mediated cell death. Nonetheless, a role for TRAIL and/or DR5 in mediating lipoapoptotic pathways is unexplored. Here, we examined the contribution of DR5 death signaling to lipoapoptosis by free fatty acids. The toxic saturated free fatty acid palmitate induces an increase in DR5 mRNA and protein expression in Huh-7 human hepatoma cells leading to DR5 localization into lipid rafts, cell surface receptor clustering with subsequent recruitment of the initiator caspase-8, and ultimately cellular demise. Lipoapoptosis by palmitate was not inhibited by a soluble human recombinant DR5-Fc chimera protein suggesting that DR5 cytotoxic signaling is ligand-independent. Hepatocytes from murine TRAIL receptor knock-out mice (DR(-/-)) displayed reduced palmitate-mediated lipotoxicity. Likewise, knockdown of DR5 or caspase-8 expression by shRNA technology attenuated palmitate-induced Bax activation and apoptosis in Huh-7 cells, without altering induction of ER stress markers. Similar observations were verified in other cell models. Finally, knockdown of CHOP, an ER stress-mediated transcription factor, reduced DR5 up-regulation and DR5-mediated caspase-8 activation upon palmitate treatment. Collectively, these results suggest that ER stress-induced CHOP activation by palmitate transcriptionally up-regulates DR5, likely resulting in ligand-independent cytotoxic signaling by this death receptor.


Assuntos
Apoptose , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Caspase 8/genética , Caspase 8/metabolismo , Linhagem Celular Tumoral , Inibidores Enzimáticos/farmacologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Técnicas de Silenciamento de Genes , Hepatócitos/patologia , Humanos , Microdomínios da Membrana/genética , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/patologia , Camundongos , Camundongos Knockout , Ácido Palmítico/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
15.
Am J Physiol Gastrointest Liver Physiol ; 302(1): G77-84, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21995961

RESUMO

Isolated hepatocytes undergo lipoapoptosis, a feature of hepatic lipotoxicity, on treatment with saturated free fatty acids (FFA) such as palmitate (PA). However, it is unknown if palmitate is directly toxic to hepatocytes or if its toxicity is indirect via the generation of lipid metabolites such as lysophosphatidylcholine (LPC). PA-mediated hepatocyte lipoapoptosis is associated with endoplasmic reticulum (ER) stress, c-Jun NH(2)-terminal kinase (JNK) activation, and a JNK-dependent upregulation of the potent proapoptotic BH3-only protein PUMA (p53 upregulated modulator of apoptosis). Our aim was to determine which of these mechanisms of lipotoxicity are activated by PA-derived LPC. We employed Huh-7 cells and isolated murine and human primary hepatocytes. Intracellular LPC concentrations increase linearly as a function of the exogenous, extracellular PA, stearate, or LPC concentration. Incubation of Huh-7 cells or primary hepatocytes with LPC induced cell death by apoptosis in a concentration-dependent manner. Substituting LPC for PA resulted in caspase-dependent cell death that was accompanied by activating phosphorylation of JNK with c-Jun phosphorylation and an increase in PUMA expression. LPC also induced ER stress as manifest by eIF2α phosphorylation and CAAT/enhancer binding homologous protein (CHOP) induction. LPC cytotoxicity was attenuated by pharmacological inhibition of JNK or glycogen synthase kinase-3 (GSK-3). Similarly, short-hairpin RNA (shRNA)-targeted knockdown of CHOP protected Huh-7 cells against LPC-induced toxicity. The LPC-induced PUMA upregulation was prevented by JNK inhibition or shRNA-targeted knockdown of CHOP. Finally, genetic deficiency of PUMA rendered murine hepatocytes resistant to LPC-induced apoptosis. We concluded that LPC-induced lipoapoptosis is dependent on mechanisms largely indistinguishable from PA. These data suggest that FFA-mediated cytotoxicity is indirect via the generation of the toxic metabolite, LPC.


Assuntos
Apoptose/efeitos dos fármacos , Hepatócitos/metabolismo , Lisofosfatidilcolinas/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Lisofosfatidilcolinas/metabolismo , MAP Quinase Quinase 4/antagonistas & inibidores , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Palmitatos/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas/metabolismo , Estearatos/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteínas Supressoras de Tumor/metabolismo
16.
Hepatology ; 54(6): 2076-88, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22038837

RESUMO

UNLABELLED: Cholangiocarcinoma (CCA) cells paradoxically express the death ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and, therefore, are dependent upon potent survival signals to circumvent TRAIL cytotoxicity. CCAs are also highly desmoplastic cancers with a tumor microenvironment rich in myofibroblasts (MFBs). Herein, we examine a role for MFB-derived CCA survival signals. We employed human KMCH-1, KMBC, HuCCT-1, TFK-1, and Mz-ChA-1 CCA cells, as well as human primary hepatic stellate and myofibroblastic LX-2 cells, for these studies. In vivo experiments were conducted using a syngeneic rat orthotopic CCA model. Coculturing CCA cells with myofibroblastic human primary hepatic stellate cells or LX-2 cells significantly decreased TRAIL-induced apoptosis in CCA cells, a cytoprotective effect abrogated by neutralizing platelet-derived growth factor (PDGF)-BB antiserum. Cytoprotection by PDGF-BB was dependent upon Hedgehog (Hh) signaling, because it was abolished by the smoothened (SMO; the transducer of Hh signaling) inhibitor, cyclopamine. PDGF-BB induced cyclic adenosine monophosphate-dependent protein kinase-dependent trafficking of SMO to the plasma membrane, resulting in glioma-associated oncogene (GLI)2 nuclear translocation and activation of a consensus GLI reporter gene-based luciferase assay. A genome-wide messenger RNA expression analysis identified 67 target genes to be commonly up- (50 genes) or down-regulated (17 genes) by both Sonic hedgehog and PDGF-BB in a cyclopamine-dependent manner in CCA cells. Finally, in a rodent CCA in vivo model, cyclopamine administration increased apoptosis in CCA cells, resulting in tumor suppression. CONCLUSIONS: MFB-derived PDGF-BB protects CCA cells from TRAIL cytotoxicity by a Hh-signaling-dependent process. These results have therapeutical implications for the treatment of human CCA.


Assuntos
Neoplasias dos Ductos Biliares/fisiopatologia , Ductos Biliares Intra-Hepáticos/fisiopatologia , Colangiocarcinoma/fisiopatologia , Proteínas Hedgehog/fisiologia , Proteínas Proto-Oncogênicas c-sis/fisiologia , Animais , Apoptose/efeitos dos fármacos , Becaplermina , Neoplasias dos Ductos Biliares/genética , Linhagem Celular Tumoral , Colangiocarcinoma/genética , Técnicas de Cocultura , Células Estreladas do Fígado/metabolismo , Humanos , Masculino , Ratos , Ratos Endogâmicos F344 , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptor Smoothened , Fatores de Transcrição/metabolismo , Alcaloides de Veratrum/farmacologia , Proteína GLI1 em Dedos de Zinco
17.
Exp Cell Res ; 317(1): 107-16, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20951133

RESUMO

TNF-related apoptosis-inducing ligand (TRAIL) is a potential chemotherapeutic agent with high selectivity for malignant cells. Many tumors, however, are resistant to TRAIL cytotoxicity. Although cellular inhibitors of apoptosis 1 and 2 (cIAP-1 and -2) are often over-expressed in cancers, their role in mediating TRAIL resistance remains unclear. Here, we demonstrate that TRAIL-induced apoptosis of liver cancer cells is associated with degradation of cIAP-1 and X-linked IAP (XIAP), whereas cIAP-2 remains unchanged. Lower concentrations of TRAIL causing minimal or no apoptosis do not alter cIAP-1 or XIAP protein levels. Silencing of cIAP-1 expression, but not XIAP or cIAP-2, as well as co-treatment with a second mitochondrial activator of caspases (SMAC) mimetic (which results in rapid depletion of cIAP-1), sensitizes the cells to TRAIL. TRAIL-induced loss of cIAP-1 and XIAP requires caspase activity. In particular, caspase 8 knockdown stabilizes both cIAP-1 and XIAP, while caspase 9 knockdown prevents XIAP, but not cIAP-1 degradation. Cell-free experiments confirmed cIAP-1 is a substrate for caspase 8, with likely multiple cleavage sites. These results suggest that TRAIL-mediated apoptosis proceeds through caspase 8-dependent degradation of cIAP-1. Targeted depletion of cIAP-1 by SMAC mimetics in conjunction with TRAIL may be beneficial for the treatment of human hepatobiliary malignancies.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Apoptose/genética , Apoptose/fisiologia , Proteína 3 com Repetições IAP de Baculovírus , Caspase 8/genética , Caspase 8/fisiologia , Caspase 9/genética , Caspase 9/metabolismo , Inibidores de Caspase , Técnicas de Silenciamento de Genes , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/genética , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Células Tumorais Cultivadas , Ubiquitina-Proteína Ligases , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
18.
J Lipid Res ; 52(8): 1517-25, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21633093

RESUMO

Saturated free fatty acids (FFA) induce hepatocyte lipoapoptosis, a key mediator of liver injury in nonalcoholic fatty liver disease (NAFLD). Lipoapoptosis involves the upregulation of the BH3-only protein PUMA, a potent pro-apoptotic protein. Given that dysregulation of hepatic microRNA expression has been observed in NAFLD, we examined the role of miRNA in regulating PUMA expression during lipotoxicity. By in silico analysis, we identified two putative binding sites for miR-296-5p within the 3' untranslated region (UTR) of PUMA mRNA. Enforced miR-296-5p levels efficiently reduced PUMA protein expression in Huh-7 cells, while antagonism of miR-296-5p function increased PUMA cellular levels. Reporter gene assays identified PUMA 3'UTR as a direct target of miR-296-5p. The saturated FFA, palmitate, repressed miR-296-5p expression; and Huh-7 cells were sensitized to palmitate-induced lipotoxicity by antagonism of miR-296-5p function using a targeted locked nucleic acid (LNA). Finally, miR-296-5p was reduced in liver samples from nonalcoholic steatohepatitis (NASH) patients compared with patients with simple steatosis (SS) or controls. Also miR-296-5p levels inversely varied with PUMA mRNA levels in human liver specimens. Our results implicate miR-296-5p in the regulation of PUMA expression during hepatic lipoapoptosis. We speculate that enhancement of miR-296-5p expression may represent a novel approach to minimize apoptotic damage in human fatty liver diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , MicroRNAs , Palmitatos/farmacologia , Proteínas Proto-Oncogênicas , Regiões 3' não Traduzidas/genética , Idoso , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação/genética , Linhagem Celular Tumoral , Fígado Gorduroso/patologia , Fígado Gorduroso/terapia , Expressão Gênica/efeitos dos fármacos , Genes Reporter , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Luciferases/análise , Masculino , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Hepatopatia Gordurosa não Alcoólica , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
19.
PLoS One ; 16(4): e0249907, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33886600

RESUMO

INTRODUCTION: Obesity during pregnancy increases the risk for maternal complications like gestational diabetes, preeclampsia, and maternal inflammation. Maternal obesity also increases the risk of childhood obesity, intrauterine growth restriction (IUGR) and diabetes to the offspring. Increased circulating free fatty acids (FFAs) in obesity due to adipose tissue lipolysis induces lipoapoptosis to hepatocytes, cholangiocytes, and pancreatic-ß-cells. During the third trimester of human pregnancy, there is an increase in maternal lipolysis and release of FFAs into the circulation. It is currently unknown if increased FFAs during gestation as a result of maternal obesity cause placental cell lipoapoptosis. Increased exposure of FFAs during maternal obesity has been shown to result in placental lipotoxicity. The objective of the present study is to determine saturated FFA-induced trophoblast lipoapoptosis and also to test the protective role of monounsaturated fatty acids against FFA-induced trophoblast lipoapoptosis using in vitro cell culture model. Here, we hypothesize that saturated FFAs induce placental trophoblast lipoapoptosis, which was prevented by monounsaturated fatty acids. METHODS: Biochemical and structural markers of apoptosis by characteristic nuclear morphological changes with DAPI staining, and caspase 3/7 activity was assessed. Cleaved PARP and cleaved caspase 3 were examined by western blot analysis. RESULTS: Treatment of trophoblast cell lines, JEG-3 and JAR cells with palmitate (PA) or stearate (SA) induces trophoblast lipoapoptosis as evidenced by a significant increase in apoptotic nuclear morphological changes and caspase 3/7 activity. We observed that saturated FFAs caused a concentration-dependent increase in placental trophoblast lipoapoptosis. We also observed that monounsaturated fatty acids like palmitoleate and oleate mitigates placental trophoblast lipoapoptosis caused due to PA exposure. CONCLUSION: We show that saturated FFAs induce trophoblast lipoapoptosis. Co-treatment of monounsaturated fatty acids like palmitoleate and oleate protects against FFA-induced trophoblast lipoapoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Ácidos Graxos não Esterificados/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular , Ácidos Graxos Monoinsaturados/farmacologia , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Ácido Palmítico/farmacologia , Placenta/citologia , Poli(ADP-Ribose) Polimerases/metabolismo , Gravidez , Primeiro Trimestre da Gravidez , Trofoblastos/citologia , Trofoblastos/metabolismo
20.
J Biol Chem ; 284(39): 26591-602, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19638343

RESUMO

Free fatty acids (FFA) induce hepatocyte lipoapoptosis by a c-Jun N-terminal kinase (JNK)-dependent mechanism. However, the cellular processes by which JNK engages the core apoptotic machinery during lipotoxicity, especially activation of BH3-only proteins, remain incompletely understood. Thus, our aim was to determine whether JNK mediates induction of BH3-only proteins during hepatocyte lipoapoptosis. The saturated FFA palmitate, but not the monounsaturated FFA oleate, induces an increase in PUMA mRNA and protein levels. Palmitate induction of PUMA was JNK1-dependent in primary murine hepatocytes. Palmitate-mediated PUMA expression was inhibited by a dominant negative c-Jun, and direct binding of a phosphorylated c-Jun containing the activator protein 1 complex to the PUMA promoter was identified by electrophoretic mobility shift assay and a chromatin immunoprecipitation assay. Short hairpin RNA-targeted knockdown of PUMA attenuated Bax activation, caspase 3/7 activity, and cell death. Similarly, the genetic deficiency of Puma rendered murine hepatocytes resistant to lipoapoptosis. PUMA expression was also increased in liver biopsy specimens from patients with non-alcoholic steatohepatitis as compared with patients with simple steatosis or controls. Collectively, the data implicate JNK1-dependent PUMA expression as a mechanism contributing to hepatocyte lipoapoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Hepatócitos/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Antracenos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Expressão Gênica/efeitos dos fármacos , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Proteína Quinase 8 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 8 Ativada por Mitógeno/genética , Palmitatos/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA