Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Virol ; 93(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30787152

RESUMO

Tailed double-stranded DNA (dsDNA) bacteriophages, herpesviruses, and adenoviruses package their genetic material into a precursor capsid through a dodecameric ring complex called the portal protein, which is located at a unique 5-fold vertex. In several phages and viruses, including T4, Φ29, and herpes simplex virus 1 (HSV-1), the portal forms a nucleation complex with scaffolding proteins (SPs) to initiate procapsid (PC) assembly, thereby ensuring incorporation of only one portal ring per capsid. However, for bacteriophage P22, the role of its portal protein in initiation of procapsid assembly is unclear. We have developed an in vitro P22 assembly assay where portal protein is coassembled into procapsid-like particles (PLPs). Scaffolding protein also catalyzes oligomerization of monomeric portal protein into dodecameric rings, possibly forming a scaffolding protein-portal protein nucleation complex that results in one portal ring per P22 procapsid. Here, we present evidence substantiating that the P22 portal protein, similarly to those of other dsDNA viruses, can act as an assembly nucleator. The presence of the P22 portal protein is shown to increase the rate of particle assembly and contribute to proper morphology of the assembled particles. Our results highlight a key function of portal protein as an assembly initiator, a feature that is likely conserved among these classes of dsDNA viruses.IMPORTANCE The existence of a single portal ring is essential to the formation of infectious virions in the tailed double-stranded DNA (dsDNA) phages, herpesviruses, and adenoviruses and, as such, is a viable antiviral therapeutic target. How only one portal is selectively incorporated at a unique vertex is unclear. In many dsDNA viruses and phages, the portal protein acts as an assembly nucleator. However, early work on phage P22 assembly in vivo indicated that the portal protein did not function as a nucleator for procapsid (PC) assembly, leading to the suggestion that P22 uses a unique mechanism for portal incorporation. Here, we show that portal protein nucleates assembly of P22 procapsid-like particles (PLPs). Addition of portal rings to an assembly reaction increases the rate of formation and yield of particles and corrects improper particle morphology. Our data suggest that procapsid assembly may universally initiate with a nucleation complex composed minimally of portal and scaffolding proteins (SPs).


Assuntos
Bacteriófago P22/química , Capsídeo/química , Montagem de Vírus , Bacteriófago P22/metabolismo , Capsídeo/metabolismo
2.
J Biol Chem ; 291(21): 11359-72, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27006399

RESUMO

The I-domain is a genetic insertion in the phage P22 coat protein that chaperones its folding and stability. Of 11 acidic residues in the I-domain, seven participate in stabilizing electrostatic interactions with basic residues across elements of secondary structure, fastening the ß-barrel fold. A hydrogen-bonded salt bridge between Asp-302 and His-305 is particularly interesting as Asp-302 is the site of a temperature-sensitive-folding mutation. The pKa of His-305 is raised to 9.0, indicating the salt bridge stabilizes the I-domain by ∼4 kcal/mol. Consistently, urea denaturation experiments indicate the stability of the WT I-domain decreases by 4 kcal/mol between neutral and basic pH. The mutants D302A and H305A remove the pH dependence of stability. The D302A substitution destabilizes the I-domain by 4 kcal/mol, whereas H305A had smaller effects, on the order of 1-2 kcal/mol. The destabilizing effects of D302A are perpetuated in the full-length coat protein as shown by a higher sensitivity to protease digestion, decreased procapsid assembly rates, and impaired phage production in vivo By contrast, the mutants have only minor effects on capsid expansion or stability in vitro The effects of the Asp-302-His-305 salt bridge are thus complex and context-dependent. Substitutions that abolish the salt bridge destabilize coat protein monomers and impair capsid self-assembly, but once capsids are formed the effects of the substitutions are overcome by new quaternary interactions between subunits.


Assuntos
Bacteriófago P22/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Substituição de Aminoácidos , Bacteriófago P22/genética , Proteínas do Capsídeo/genética , Concentração de Íons de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cloreto de Sódio/metabolismo , Termodinâmica
3.
Rapid Commun Mass Spectrom ; 30(17): 1957-62, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27501430

RESUMO

RATIONALE: Bacteriophage P22 is believed to contain a total of 521 copies of 9 different proteins and a 41,724 base pair genome. Despite its enormous size and complexity, phage P22 can be electrosprayed, and it remains intact in ultra-high vacuum where its molar mass distribution has been measured. METHODS: Phage P22 virions were generated by complementation in Salmonella enterica and purified. They were transferred into 100 mM ammonium acetate and then electrosprayed. The masses of individual virions were determined using charge detection mass spectrometry. RESULTS: The stoichiometry of the protein components of phage P22 is sufficiently well known that the theoretical molar mass can be determined to within a narrow range. The measured average molar mass of phage P22, 52,180 ± 59 kDa, is consistent with the theoretical molar mass and supports the proposed stoichiometry of the components. The intrinsic width of the phage P22 mass distribution can be accounted for by the distribution of DNA packaged by the headful mechanism. CONCLUSIONS: At over 50 MDa, phage P22 is the largest object with a well-defined molar mass to be analyzed by mass spectrometry. The narrow measured mass distribution indicates that the virions survive the transition into the gas phase intact. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Bacteriófago P22/química , Bacteriófago P22/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray/métodos , Vírion/química , Vírion/isolamento & purificação , Virologia/métodos , DNA Viral/análise , DNA Viral/química , Peso Molecular , Salmonella enterica/virologia , Proteínas Virais/análise , Proteínas Virais/química , Cultura de Vírus
4.
J Virol ; 88(10): 5287-97, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24600011

RESUMO

UNLABELLED: Icosahedral virus assembly requires a series of concerted and highly specific protein-protein interactions to produce a proper capsid. In bacteriophage P22, only coat protein (gp5) and scaffolding protein (gp8) are needed to assemble a procapsid-like particle, both in vivo and in vitro. In scaffolding protein's coat binding domain, residue R293 is required for procapsid assembly, while residue K296 is important but not essential. Here, we investigate the interaction of scaffolding protein with acidic residues in the N-arm of coat protein, since this interaction has been shown to be electrostatic. Through site-directed mutagenesis of genes 5 and 8, we show that changing coat protein N-arm residue 14 from aspartic acid to alanine causes a lethal phenotype. Coat protein residue D14 is shown by cross-linking to interact with scaffolding protein residue R293 and, thus, is intimately involved in proper procapsid assembly. To a lesser extent, coat protein N-arm residue E18 is also implicated in the interaction with scaffolding protein and is involved in capsid size determination, since a cysteine mutation at this site generated petite capsids. The final acidic residue in the N-arm that was tested, E15, is shown to only weakly interact with scaffolding protein's coat binding domain. This work supports growing evidence that surface charge density may be the driving force of virus capsid protein interactions. IMPORTANCE: Bacteriophage P22 infects Salmonella enterica serovar Typhimurium and is a model for icosahedral viral capsid assembly. In this system, coat protein interacts with an internal scaffolding protein, triggering the assembly of an intermediate called a procapsid. Previously, we determined that there is a single amino acid in scaffolding protein required for P22 procapsid assembly, although others modulate affinity. Here, we identify partners in coat protein. We show experimentally that relatively weak interactions between coat and scaffolding proteins are capable of driving correctly shaped and sized procapsids and that the lack of these proper protein-protein interfaces leads to aberrant structures. The present work represents an important contribution supporting the hypothesis that virus capsid assembly is governed by seemingly simple interactions. The highly specific nature of the subunit interfaces suggests that these could be good targets for antivirals.


Assuntos
Bacteriófago P22/química , Bacteriófago P22/fisiologia , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Mapeamento de Interação de Proteínas , Proteínas Estruturais Virais/metabolismo , Montagem de Vírus , Bacteriófago P22/genética , Proteínas do Capsídeo/genética , Análise Mutacional de DNA , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Eletricidade Estática , Proteínas Estruturais Virais/genética
5.
Viruses ; 14(7)2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35891382

RESUMO

The oligomerization and incorporation of the bacteriophage P22 portal protein complex into procapsids (PCs) depends upon an interaction with scaffolding protein, but the region of the portal protein that interacts with scaffolding protein has not been defined. In herpes simplex virus 1 (HSV-1), conserved tryptophan residues located in the wing domain are required for portal-scaffolding protein interactions. In this study, tryptophan residues (W) present at positions 41, 44, 207 and 211 within the wing domain of the bacteriophage P22 portal protein were mutated to both conserved and non-conserved amino acids. Substitutions at each of these positions were shown to impair portal function in vivo, resulting in a lethal phenotype by complementation. The alanine substitutions caused the most severe defects and were thus further characterized. An analysis of infected cell lysates for the W to A mutants revealed that all the portal protein variants except W211A, which has a temperature-sensitive incorporation defect, were successfully recruited into procapsids. By charge detection mass spectrometry, all W to A mutant portal proteins were shown to form stable dodecameric rings except the variant W41A, which dissociated readily to monomers. Together, these results suggest that for P22 conserved tryptophan, residues in the wing domain of the portal protein play key roles in portal protein oligomerization and incorporation into procapsids, ultimately affecting the functionality of the portal protein at specific stages of virus assembly.


Assuntos
Bacteriófago P22 , Herpesvirus Humano 1 , Bacteriófago P22/genética , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Herpesvirus Humano 1/metabolismo , Triptofano/análise , Triptofano/metabolismo , Montagem de Vírus
6.
Eukaryot Cell ; 9(10): 1612-21, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20709788

RESUMO

The Schizosaccharomyces pombe telomere-associated protein Ccq1p has previously been shown to participate in telomerase recruitment, heterochromatin formation, and suppression of checkpoint activation. Here we characterize a critical role for Ccq1p in mitotic transit. We show that mitotic cells lacking Ccq1p lose minichromosomes at high frequencies but that conditional knockdown of Ccq1p expression results in telomere bridging within one cell cycle. Elevating Ccq1p expression resolves the telomere entanglements caused by decreased Taz1p activity. Ccq1p affects telomere resolution in the absence of changes in telomere size, indicating a role for Ccq1p that is independent of telomere length regulation. Using affinity purification, we identify the condensin proteins Cut3p and Cut14p as candidate Ccq1p interactors in this activity. Condensin loss-of-function disrupts Ccq1p telomeric localization and normal intertelomere clustering, while condensin overexpression relieves the chromosome segregation defects associated with conditional Ccq1p knockdown. These data suggest that Ccq1p and condensins collaborate to mediate resolution of telomeres in mitosis and regulate intertelomeric clustering during interphase.


Assuntos
Mitose , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Telômero/metabolismo , Cromossomos Fúngicos/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
7.
Sci Adv ; 3(7): e1700423, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28782023

RESUMO

Most double-stranded DNA viruses package genetic material into empty precursor capsids (or procapsids) through a dodecameric portal protein complex that occupies 1 of the 12 vertices of the icosahedral lattice. Inhibiting incorporation of the portal complex prevents the formation of infectious virions, making this step an excellent target for antiviral drugs. The mechanism by which a sole portal assembly is selectively incorporated at the special vertex is unclear. We recently showed that, as part of the DNA packaging process for bacteriophage P22, the dodecameric procapsid portal changes conformation to a mature virion state. We report that preformed dodecameric rings of P22 portal protein, as opposed to portal monomers, incorporate into nascent procapsids, with preference for the procapsid portal conformation. Finally, a novel role for P22 scaffolding protein in triggering portal ring formation from portal monomers is elucidated and validated by incorporating de novo assembled portal rings into procapsids.


Assuntos
Bacteriófago P22/fisiologia , Proteínas do Capsídeo/metabolismo , Multimerização Proteica , Montagem de Vírus , Proteínas do Capsídeo/química , Modelos Moleculares , Conformação Proteica , Análise Espectral , Proteínas Virais/química , Proteínas Virais/metabolismo
8.
Nat Commun ; 8: 14310, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134243

RESUMO

Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or 'procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinity for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of 'Headful Packaging' is a DNA-dependent symmetrization of portal protein.


Assuntos
Bacteriófago P22/fisiologia , Proteínas do Capsídeo/química , Capsídeo/fisiologia , DNA Viral/fisiologia , Montagem de Vírus/fisiologia , Bacteriófago P22/ultraestrutura , Capsídeo/ultraestrutura , Proteínas do Capsídeo/fisiologia , Proteínas do Capsídeo/ultraestrutura , Cristalografia por Raios X , Empacotamento do DNA/fisiologia , DNA Viral/ultraestrutura , Endodesoxirribonucleases/metabolismo , Genoma Viral/fisiologia , Microscopia Eletrônica , Simulação de Acoplamento Molecular , Multimerização Proteica/fisiologia , Estrutura Quaternária de Proteína/fisiologia
9.
J Am Soc Mass Spectrom ; 27(6): 1028-36, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27020925

RESUMO

Charge detection mass spectrometry (CDMS) is a single-molecule technique particularly well-suited to measuring the mass and charge distributions of heterogeneous, MDa-sized ions. In this work, CDMS has been used to analyze the assembly products of two coat protein variants of bacteriophage P22. The assembly products show broad mass distributions extending from 5 to 15 MDa for A285Y and 5 to 25 MDa for A285T coat protein variants. Because the charge of large ions generated by electrospray ionization depends on their size, the charge can be used to distinguish hollow shells from more compact structures. A285T was found to form T = 4 and T = 7 procapsids, and A285Y makes a small number of T = 3 and T = 4 procapsids. Owing to the decreased stability of the A285Y and A285T particles, chemical cross-linking was required to stabilize them for electrospray CDMS.Graphical Abstract.


Assuntos
Proteínas do Capsídeo/química , Espectrometria de Massas , Vírion/química , Capsídeo , Montagem de Vírus
10.
mBio ; 7(4)2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27507825

RESUMO

UNLABELLED: The P22 capsid is a T=7 icosahedrally symmetric protein shell with a portal protein dodecamer at one 5-fold vertex. Extending outwards from that vertex is a short tail, and putatively extending inwards is a 15-nm-long α-helical barrel formed by the C-terminal domains of portal protein subunits. In addition to the densely packed genome, the capsid contains three "ejection proteins" (E-proteins [gp7, gp16, and gp20]) destined to exit from the tightly sealed capsid during the process of DNA delivery into target cells. We estimated their copy numbers by quantitative SDS-PAGE as approximately 12 molecules per virion of gp16 and gp7 and 30 copies of gp20. To localize them, we used bubblegram imaging, an adaptation of cryo-electron microscopy in which gaseous bubbles induced in proteins by prolonged irradiation are used to map the proteins' locations. We applied this technique to wild-type P22, a triple mutant lacking all three E-proteins, and three mutants each lacking one E-protein. We conclude that all three E-proteins are loosely clustered around the portal axis, in the region displaced radially inwards from the portal crown. The bubblegram data imply that approximately half of the α-helical barrel seen in the portal crystal structure is disordered in the mature virion, and parts of the disordered region present binding sites for E-proteins. Thus positioned, the E-proteins are strategically placed to pass down the shortened barrel and through the portal ring and the tail, as they exit from the capsid during an infection. IMPORTANCE: While it has long been appreciated that capsids serve as delivery vehicles for viral genomes, there is now growing awareness that viruses also deliver proteins into their host cells. P22 has three such proteins (ejection proteins [E-proteins]), whose initial locations in the virion have remained unknown despite their copious amounts (total of 2.5 MDa). This study succeeded in localizing them by the novel technique of bubblegram imaging. The P22 E-proteins are seen to be distributed around the orifice of the portal barrel. Interestingly, this barrel, 15 nm long in a crystal structure, is only about half as long in situ: the remaining, disordered, portion appears to present binding sites for E-proteins. These observations document a spectacular example of a regulatory order-disorder transition in a supramolecular system and demonstrate the potential of bubblegram imaging to map the components of other viruses as well as cellular complexes.


Assuntos
Bacteriófago P22/química , Microscopia Crioeletrônica , Proteínas Virais/análise , Vírion/química , Bacteriófago P22/ultraestrutura , Modelos Biológicos , Vírion/ultraestrutura
11.
Mol Cell Biol ; 32(14): 2784-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22586263

RESUMO

Epigenetic mechanisms maintain the specific characteristics of differentiated cells by ensuring the inheritance of gene expression patterns through DNA replication and mitosis. We examined the mechanism of epigenetic inheritance of Sir protein-dependent transcriptional silencing in Saccharomyces cerevisiae by examining gene expression and molecular markers of silencing at the silent mating type loci under conditions of limiting Sir3 protein. We observed that silencing at HMR, as previously reported for HML, is epigenetically inherited. This inheritance is accompanied by an increased ability of previously silenced cells to retain or recruit limiting Sir3 protein to cis-acting silencer sequences. We also observed that the low H4-K16 histone acetylation and H3-K79 methylation associated with a silenced HMR locus persist in recently derepressed cells for several generations at levels of Sir3 insufficient to maintain these marks in long-term-derepressed cells. The unique ability of previously silenced cells to retain Sir3 protein, maintain silencing-specific histone modifications, and repress HMR transcription at levels of Sir3 insufficient to mediate these effects in long-term-derepressed cells suggests that a cis-acting, chromatin-based mechanism drives epigenetic inheritance at this locus.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Acetilação , Sequência de Bases , DNA Fúngico/genética , Inativação Gênica , Genes Fúngicos , Histonas/metabolismo , Metilação , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Elementos Silenciadores Transcricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA