Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 73(22): 7503-7515, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36055760

RESUMO

Plants enhance nutrient uptake in heterogeneous nutrient environments through selective root placement. Many studies have documented that plants grow better under heterogeneous than under homogeneous nutrient distribution, but comprehensive syntheses are relatively few. In a meta-analysis, we examined the effects of patch scale and contrast on plant responses by synthesizing the effects of nutrient heterogeneity on root foraging and plant growth in 131 comparative studies. Plant responses to nutrient heterogeneity were phylogenetically conserved, and the response in shoot biomass was significantly correlated with the response in root biomass but not with root foraging precision. Root precision depended on the competition regime, and plants had lower precision in interspecific than in conspecific competition. Community-level growth was significantly promoted by nutrient heterogeneity and was less variable than individual-level responses. Along with increasing patch scale, overall shoot and root responses of individuals increased but root foraging precision declined. In addition, moderate patch contrast induced the highest root responses. Our results indicate that plants optimize nutrient acquisition from heterogeneous patches mainly through increasing root growth, and plant communities exploit heterogeneous nutrients more effectively than individuals. Understanding the roles of patch attributes in nutrient-heterogeneity effects may help in designing fertilization practices to promote productivity and conserve biodiversity.

2.
Proc Biol Sci ; 285(1886)2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209222

RESUMO

Plants are thought to be able to regulate local root growth according to its overall nutrient status as well as nutrient contents in a local substrate patch. Therefore, root plastic responses to environmental changes are probably co-determined by local responses of root modules and systematic control of the whole plant. Recent studies showed that the contrast in nutrient availability between different patches could significantly influence the growth and death of local roots. In this study, we further explored, beside nutrient contrast, whether root growth and death in a local patch are also affected by relative root quantity in the patch. We conducted a split-root experiment with different splitting ratios of roots of Canada goldenrod (Solidago canadensis) individuals, as well as high- (5× Hoagland solution versus water) or low- (1× Hoagland solution versus water) contrast nutrient conditions for the split roots. The results showed that root growth decreased in nutrient-rich patches but increased in nutrient-poor patches when more roots co-occurred in the same patches, irrespective of nutrient contrast condition. Root mortality depended on contrasts in both root quantity and nutrients: in the high-nutrient-contrast condition, it increased in nutrient-rich patches but decreased in nutrient-poor patches with increasing root proportion; while in the low-nutrient-contrast condition, it showed the opposite trend. These results demonstrated that root growth and death dynamics were affected by the contrast in both nutrient availability and root quantity between patches. Our study provided ecological evidence that local root growth and death are mediated by both the responses of root modules to a nutrient patch and the whole-plant nutrient status, suggesting that future work investigating root production and turnover should take into account the degree of heterogeneity in nutrient and root distribution.


Assuntos
Solidago/fisiologia , Nutrientes/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Solidago/crescimento & desenvolvimento
3.
Integr Zool ; 16(1): 67-83, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32822100

RESUMO

The North Chinese leopard (Panthera pardus japonensis), the least-known big cat, disappeared in most historical range for decades, following the development of modern civilization. Unfortunately, we have scarce knowledge about the status of this big cat so far, apart from anecdotal reports. In this study, we investigated density, distribution, and habitat use of the leopard, the apex predator, in a complex forest landscape in the Loess Plateau. We used a camera-trapping network to obtain population estimates for leopards over 2 years through spatially explicit capture-recapture models. Our results, based on maximum likelihood and Bayesian/MCMC methods, reveal that the largest wild population of the leopard was found widely distributed in remnant forests in central Loess plateau. The population is increasing in our study area, and the density of leopards (1.70 (SE = 0.48) - 2.40 (SE = 0.67)/100 km2 ) is higher than other areas of China. According to the analysis of 2 seasonal occupancy models, prey species drive partially the leopard habitat use, predicting that the big cat thrives from the recovery of prey community. However, human disturbances, especially oil wells, seem to have negative impacts on the habitat use of leopards. Specifically, it is necessary to have joint efforts by the government and researchers to improve human disturbances management and prey species population density, as well as strengthen the investment in research on the North Chinese leopard, which could all further strengthen protection ability and ensure the long-term survival of this species.


Assuntos
Ecossistema , Panthera , Comportamento Predatório , Distribuição Animal , Animais , China , Conservação dos Recursos Naturais , Atividades Humanas , Densidade Demográfica
4.
Ecol Appl ; 20(4): 1126-35, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20597295

RESUMO

Sustainability of agricultural landscapes depends largely on land-use practices. As one of the most productive and widespread agricultural soils, loess is often deep and easily eroded, posing grand challenges for environmental sustainability around the world. One prime example is the Loess Plateau of China, which has been cultivated for more than 7500 years. Based on long-term data sets, this study demonstrates that the dominant agricultural practice, winter wheat cropping, continues to be the primary driver for the massive soil erosion and landscape modifications on the Loess Plateau. This traditional farming system is asynchronous with the dynamic rhythm between natural vegetation and climate in the region. In particular, the long summer fallow period for winter wheat fields is concurrent with the heavy-rainstorm season, which greatly accelerates soil erosion. Our finding indicates that common land-use practices that have lasted for thousands of years in China are not environmentally sustainable. Agriculture in this region has relied primarily on the continuous "mining" of the soil for the past several thousand years but does not have a one-thousand-year future because of myriad environmental and socioeconomic factors associated with soil erosion. To contain soil erosion and promote sustainability on the Loess Plateau, therefore, a change in the agricultural regime is needed to make sure that current and future agricultural practices follow the vegetation-climate rhythm. In addition, to achieve environmental, economic, and social sustainability in this region, multifunctional land-use planning is required to increase landscape diversity and functions (e.g., proper arrangement of crop fields, orchards, and protected areas).


Assuntos
Agricultura , Clima , Poluição Ambiental , Solo , Triticum , China , Conservação dos Recursos Naturais , Produtos Agrícolas
5.
Plants (Basel) ; 7(1)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495558

RESUMO

(1) Background: Plant roots respond to nutrients through root architecture that is regulated by hormones. Strong inter-specific variation in root architecture has been well documented, but physiological mechanisms that may control the variation have not. (2) Methods: We examined correlations between root architecture and hormones to seek clues on mechanisms behind root foraging behavior. In the green house at Beijing Normal University, hydroponic culture experiments were used to examine the root responses of four species-Callistephus chinensis, Solidago canadensis, Ailanthus altissima, Oryza sativa-to two nitrogen types (NO3- or NH4⁺), three nitrogen concentrations (low, medium, and high concentrations of 0.2, 1, and 18 mM, respectively) and two ways of nitrogen application (stable vs. variable). The plants were harvested after 36 days to measure root mass, 1st order root length, seminal root length for O. sativa, density of the 1st order laterals, seminal root number for O. sativa, the inter-node length of the 1st order laterals, and root hormone contents of indole-3-acetic acid, abscisic acid, and cytokinins (zeatin + zeatinriboside). (3) Results: Species differed significantly in their root architecture responses to nitrogen treatments. They also differed significantly in hormone responses to the nitrogen treatments. Additionally, the correlations between root architecture and hormone responses were quite variable across the species. Each hormone had highly species-specific relationships with root responses. (4) Conclusions: Our finding implies that a particular root foraging behavior is probably not controlled by the same biochemical pathway in all species.

6.
Ecol Evol ; 8(6): 3367-3375, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29607031

RESUMO

There is little direct evidence for effects of soil heterogeneity and root plasticity on the competitive interactions among plants. In this study, we experimentally examined the impacts of temporal nutrient heterogeneity on root growth and interactions between two plant species with very different rooting strategies: Liquidambar styraciflua (sweet gum), which shows high root plasticity in response to soil nutrient heterogeneity, and Pinus taeda (loblolly pine), a species with less plastic roots. Seedlings of the two species were grown in sandboxes in inter- and intraspecific combinations. Nutrients were applied in a patch either in a stable (slow-release) or in a variable (pulse) manner. Plant aboveground biomass, fine root mass, root allocation between nutrient patch and outside the patch, and root vertical distribution were measured. L. styraciflua grew more aboveground (40% and 27% in stable and variable nutrient treatment, respectively) and fine roots (41% and 8% in stable and variable nutrient treatment, respectively) when competing with P. taeda than when competing with a conspecific individual, but the growth of P. taeda was not changed by competition from L. styraciflua. Temporal variation in patch nutrient level had little effect on the species' competitive interactions. The more flexible L. styraciflua changed its vertical distribution of fine roots in response to competition from P. taeda, growing more roots in deeper soil layers compared to its roots in conspecific competition, leading to niche differentiation between the species, while the fine root distribution of P. taeda remained unchanged across all treatments. Synthesis. L. styraciflua showed greater flexibility in root growth by changing its root vertical distribution and occupying space of not occupied by P. taeda. This flexibility gave L. styraciflua an advantage in interspecific competition.

7.
Ecol Evol ; 8(23): 11677-11693, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598766

RESUMO

Large carnivore populations are globally threatened by human impacts. Better protection could benefit carnivores, co-occurring species, and the ecosystems they inhabit. The relationship between carnivores and humans, however, is not always consistent in areas of high human activities and is often mediated through the effects of humans on their ungulate prey. To test assumptions regarding how prey abundance and humans affect carnivore occurrence, density, and daily activity patterns, we assessed tiger-prey-human spatiotemporal patterns based on camera-trapping data in Hunchun Nature Reserve, a promising core area for tiger restoration in China. Our study area contained seasonally varying levels of human disturbance in summer and winter. We used N-mixture models to predict the relative abundance of ungulate prey considering human and environmental covariates. We estimated tiger spatial distribution using occupancy models and models of prey relative abundance from N-mixture models. Finally, we estimated temporal activity patterns of tigers and prey using kernel density estimates to test for temporal avoidance between tigers, prey, and humans. Our results show that human-related activities depressed the relative abundance of prey at different scales and in different ways, but across species, the relative abundance of prey directly increased tiger occupancy. Tiger occupancy was strongly positively associated with the relative abundance of sika deer in summer and winter. The crepuscular and nocturnal tigers also apparently synchronized their activity with that of wild boar and roe deer. However, tigers temporally avoided human activity without direct spatial avoidance. Our study supports the effects of humans on tigers through human impacts on prey populations. Conservation efforts may not only target human disturbance on predators, but also on prey to alleviate human-carnivore conflict.

8.
Sci Rep ; 8(1): 6930, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720702

RESUMO

We analyzed the scats of Amur tigers and Amur leopards, and examined their annual and seasonal food habits in Northeast China to comprehend their coexistence. Wild boar had the highest annual and seasonal consumption frequencies by the tigers, while both roe deer and sika deer were mostly preyed by the leopards annually. The three species appeared to be the key preys in terms of high proportion of consumed biomass by the two felids. Our data also revealed numerous mid-sized carnivores and small mammals included in the two felids' food list. We used the relative abundance and biomass density estimation in prey density estimation to calculate the prey preferences of tigers and leopards, and both methods confirmed that Amur tigers strongly preferred wild boar. However, preference estimations of Amur leopards were not consistant, or even opposite to one another from the two methods. The results of the study suggested that prey preference of predators is largely determined by body size of the prey species. Variation in diet composition of the two felids suggests that resource partitioning may contribute to their coexistence.


Assuntos
Comportamento Alimentar , Panthera , Comportamento Predatório , Estações do Ano , Tigres , Ração Animal , Animais , China , Conservação dos Recursos Naturais , Ecossistema , Geografia
9.
PLoS One ; 11(4): e0154254, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27100387

RESUMO

Over the past century, the endangered Amur tiger (Panthera tigris altaica) has experienced a severe contraction in demography and geographic range because of habitat loss, poaching, and prey depletion. In its historical home in Northeast China, there appears to be a single tiger population that includes tigers in Southwest Primorye and Northeast China; however, the current demographic status of this population is uncertain. Information on the abundance, distribution and genetic diversity of this population for assessing the efficacy of conservation interventions are scarce. We used noninvasive genetic detection data from scats, capture-recapture models and an accumulation curve method to estimate the abundance of Amur tigers in Northeast China. We identified 11 individual tigers (6 females and 5 males) using 10 microsatellite loci in three nature reserves between April 2013 and May 2015. These tigers are confined primarily to a Hunchun Nature Reserve along the border with Russia, with an estimated population abundance of 9-11 tigers during the winter of 2014-2015. They showed a low level of genetic diversity. The mean number of alleles per locus was 2.60 and expected and observed heterozygosity were 0.42 and 0.49, respectively. We also documented long-distance dispersal (~270 km) of a male Amur tiger to Huangnihe Nature Reserve from the border, suggesting that the expansion of neighboring Russian populations may eventually help sustain Chinese populations. However, the small and isolated population recorded by this study demonstrate that there is an urgent need for more intensive regional management to create a tiger-permeable landscape and increased genetic connectivity with other populations.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Variação Genética , Tigres/genética , Distribuição Animal , Animais , China , Citocromos b/genética , DNA Mitocondrial/genética , Feminino , Frequência do Gene , Genótipo , Geografia , Masculino , Repetições de Microssatélites/genética , Densidade Demográfica , Dinâmica Populacional , Tigres/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento
10.
Integr Zool ; 11(4): 322-32, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27136188

RESUMO

As an apex predator the Amur tiger (Panthera tigris altaica) could play a pivotal role in maintaining the integrity of forest ecosystems in Northeast Asia. Due to habitat loss and harvest over the past century, tigers rapidly declined in China and are now restricted to the Russian Far East and bordering habitat in nearby China. To facilitate restoration of the tiger in its historical range, reliable estimates of population size are essential to assess effectiveness of conservation interventions. Here we used camera trap data collected in Hunchun National Nature Reserve from April to June 2013 and 2014 to estimate tiger density and abundance using both maximum likelihood and Bayesian spatially explicit capture-recapture (SECR) methods. A minimum of 8 individuals were detected in both sample periods and the documentation of marking behavior and reproduction suggests the presence of a resident population. Using Bayesian SECR modeling within the 11 400 km(2) state space, density estimates were 0.33 and 0.40 individuals/100 km(2) in 2013 and 2014, respectively, corresponding to an estimated abundance of 38 and 45 animals for this transboundary Sino-Russian population. In a maximum likelihood framework, we estimated densities of 0.30 and 0.24 individuals/100 km(2) corresponding to abundances of 34 and 27, in 2013 and 2014, respectively. These density estimates are comparable to other published estimates for resident Amur tiger populations in the Russian Far East. This study reveals promising signs of tiger recovery in Northeast China, and demonstrates the importance of connectivity between the Russian and Chinese populations for recovering tigers in Northeast China.


Assuntos
Tigres , Animais , China , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Feminino , Masculino , Densidade Demográfica , Federação Russa
11.
Oecologia ; 138(4): 613-21, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14689301

RESUMO

Although disturbance is known to alter soil nutrient heterogeneity, it remains unclear whether spatial patterns in soil nutrients after disturbance follow predictable temporal changes that reflect underlying processes. This study examined the effects of tree harvesting and girdling on overall variability, geostatistical patterns, and resource congruence of soil available nutrients in a mature Pinus elliottii Engelm. forest. The two disturbances led to different patterns of vegetation removal, forest floor redistribution, and revegetation, but showed similar post-disturbance changes in overall soil nutrient variability. Soil nutrient variability increased after both disturbances by more than 5-fold, and then decreased, returning to the undisturbed level in 4 years. Spatial structures assessed using geostatistics did not show predictable temporal trends. However, girdled plots showed more persistent spatial structures in soil nutrients than harvested plots, and had semivariogram ranges mostly equal to or less than 10 m, reflecting effects of persistent and spatially stable patches of undisturbed hardwoods that had an average patch size of 10 m. Resource congruence examined with Spearman rank correlations was nil before disturbance, increased after disturbance and then became nil again by the 4th year post-disturbance. The timing of the increase was related to treatment, occurring in the 1st year after disturbance in the girdled plots, but not until the 2nd year in the harvested plots. These two patterns of congruence were potentially caused by different rates of nutrient patch formation and resource uptake by plants during early succession. Although temporal changes in soil heterogeneity have been documented previously, the present study indicates that temporal trends in nutrient variability after disturbance may be predictable, and that the marked changes in spatio-temporal patterns of soil nutrients as a result of disturbance are ephemeral.


Assuntos
Ecossistema , Pinus , Solo/análise , Humanos , Nitrogênio/análise , Fósforo/análise , South Carolina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA