Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Clin Pharmacol Ther ; 115(1): 104-115, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37846607

RESUMO

Clinical use of tacrolimus (TAC), an essential immunosuppressant following transplantation, is complexified by its high pharmacokinetic (PK) variability. The gut microbiota gains growing interest but limited investigations have evaluated its contribution to TAC PKs. Here, we explore the associations between the gut microbiota composition and TAC PKs. In this pilot cross-sectional study (Clinicaltrial.gov NCT04360031), we recruited 93 CYP3A5 non-expressers stabilized kidney transplant recipients. Gut microbiota composition was characterized by 16S rRNA gene sequencing, TAC PK parameters were computed, and additional demographic and medical covariates were collected. Associations between PK parameters or diabetic status and the gut microbiota composition, as reflected by α- and ß-diversity metrics, were evaluated. Patients with higher TAC area under the curve AUC/(dose/kg) had higher bacterial richness, and TAC PK parameters were associated with specific bacterial taxa (e.g., Bilophila) and amplicon sequence variant (ASV; e.g., ASV 1508 and ASV 1982 (Veillonella/unclassified Sporomusaceae); ASV 664 (unclassified Oscillospiraceae)). Building a multiple linear regression model showed that ASV 1508 (co-abundant with ASV 1982) and ASV 664 explained, respectively, 16.0% and 4.6% of the interindividual variability in TAC AUC/(dose/kg) in CYP3A5 non-expresser patients, when adjusting for hematocrit and age. Anaerostipes relative abundance was decreased in patients with diabetes. Altogether, this pilot study revealed unprecedented links between the gut microbiota composition and diversity and TAC PKs in stable kidney transplant recipients. It supports the relevance of studying the gut microbiota as an important contributor to TAC PK variability. Elucidating the causal relationship will offer new perspectives to predict TAC inter- and intra-PK variability.


Assuntos
Microbioma Gastrointestinal , Transplante de Rim , Humanos , Tacrolimo/farmacocinética , Citocromo P-450 CYP3A/genética , Transplante de Rim/efeitos adversos , Estudos Transversais , Microbioma Gastrointestinal/genética , Projetos Piloto , RNA Ribossômico 16S/genética , Imunossupressores/efeitos adversos , Imunossupressores/farmacocinética , Genótipo
2.
Front Neurol ; 13: 826102, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309552

RESUMO

The accumulation of proteinaceous deposits comprised largely of the α-synuclein protein is one of the main hallmarks of Parkinson's disease (PD) and related synucleinopathies. Their progressive development coincides with site-specific phosphorylation, oxidative stress and eventually, compromised neuronal function. However, modeling protein aggregate formation in animal or in vitro models has proven notably difficult. Here, we took advantage of a preclinical organotypic brain slice culture model to study α-synuclein aggregate formation ex vivo. We monitored the progressive and gradual changes induced by α-synuclein such as cellular toxicity, autophagy activation, mitochondrial dysfunction, cellular death as well as α-synuclein modification including site-specific phosphorylation. Our results demonstrate that organotypic brain slice cultures can be cultured for long periods of time and when cultured in the presence of aggregated α-synuclein, the molecular features of PD are recapitulated. Taken together, this ex vivo model allows for detailed modeling of the molecular features of PD, thus enabling studies on the cumulative effects of α-synuclein in a complex environment. This provides a platform to screen potential disease-modifying therapeutic candidates aimed at impeding α-synuclein aggregation and/or cellular transmission. Moreover, this model provides a robust replacement for in vivo studies that do not include behavioral experiments, thus providing a way to reduce the number of animals used in an accelerated timescale.

3.
Psychopharmacology (Berl) ; 239(1): 229-242, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34888704

RESUMO

RATIONALE: Major depressive disorder (MDD) is a leading cause of disability worldwide but currently prescribed treatments do not adequately ameliorate the disorder in a significant portion of patients. Hence, a better appreciation of its aetiology may lead to the development of novel therapies. OBJECTIVES: In the present study, we have built on our previous findings indicating a role for protease-activated receptor-2 (PAR2) in sickness behaviour to determine whether the PAR2 activator, AC264613, induces behavioural changes similar to those observed in depression-like behaviour. METHODS: AC264613-induced behavioural changes were examined using the open field test (OFT), sucrose preference test (SPT), elevated plus maze (EPM), and novel object recognition test (NOR). Whole-cell patch clamping was used to investigate the effects of PAR2 activation in the lateral habenula with peripheral and central cytokine levels determined using ELISA and quantitative PCR. RESULTS: Using a blood-brain barrier (BBB) permeable PAR2 activator, we reveal that AC-264613 (AC) injection leads to reduced locomotor activity and sucrose preference in mice but is without effect in anxiety and memory-related tasks. In addition, we show that AC injection leads to elevated blood sera IL-6 levels and altered cytokine mRNA expression within the brain. However, neither microglia nor peripheral lymphocytes are the source of these altered cytokine profiles. CONCLUSIONS: These data reveal that PAR2 activation results in behavioural changes often associated with depression-like behaviour and an inflammatory profile that resembles that seen in patients with MDD and therefore PAR2 may be a target for novel antidepressant therapies.


Assuntos
Transtorno Depressivo Maior , Microglia , Animais , Citocinas , Depressão , Humanos , Camundongos , Receptor PAR-2
4.
Expert Opin Drug Metab Toxicol ; 16(9): 769-782, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32721175

RESUMO

INTRODUCTION: In kidney transplantation, tacrolimus (TAC) is at the cornerstone of current immunosuppressive strategies. Though because of its narrow therapeutic index, it is critical to ensure that TAC levels are maintained within this sharp window through reactive adjustments. This would allow maximizing efficiency while limiting drug-associated toxicity. However, TAC high intra- and inter-patient pharmacokinetic (PK) variability makes it more laborious to accurately predict the appropriate dosage required for a given patient. AREAS COVERED: This review summarizes the state-of-the-art knowledge regarding drug interactions, demographic and pharmacogenetics factors as predictors of TAC PK. We provide a scoring index for each association to grade its relevance and we present practical recommendations, when possible for clinical practice. EXPERT OPINION: The management of TAC concentration in transplanted kidney patients is as critical as it is challenging. Recommendations based on rigorous scientific evidences are lacking as knowledge of potential predictors remains limited outside of DDIs. Awareness of these limitations should pave the way for studies looking at demographic and pharmacogenetic factors as well as gut microbiota composition in order to promote tailored treatment plans. Therapeutic approaches considering patients' clinical singularities may help allowing to maintain appropriate concentration of TAC.


Assuntos
Imunossupressores/administração & dosagem , Transplante de Rim , Tacrolimo/administração & dosagem , Animais , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/farmacocinética , Farmacogenética , Tacrolimo/efeitos adversos , Tacrolimo/farmacocinética
5.
Curr Drug Targets ; 17(16): 1861-1870, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26648078

RESUMO

Protease-activated receptors (PARs) are a novel family of G-protein coupled receptors (GPCRs) whose activation requires the cleavage of the N-terminus by a serine protease. However, recent evidence reveals that alternative routes of activation also occur, that PARs signal via multiple pathways and that pathway activation is activator- dependent. Given our increased understanding of PAR function both under physiological and pathophysiological conditions, one aspect that has remained constant is the link between PAR2 and inflammation. PAR2 is expressed in immune cells of both the innate and adaptive immune system and has been shown to play a role in several peripheral inflammatory conditions. PAR2 is similarly expressed on astrocytes and microglia within the CNS and its activation is either protective or detrimental to CNS function depending on the conditions or disease state investigated. With a clear similarity between the function of PAR2 on both immune cells and CNS glial cells, here we have reviewed their roles in both these systems. We suggest that the recent development of novel PAR2 modulators, including those that show biased signalling, will further increase our understanding of PAR2 function and the development of potential therapeutics for CNS disorders in which inflammation is proposed to play a role.


Assuntos
Astrócitos/metabolismo , Doenças do Sistema Nervoso Central/imunologia , Neuroglia/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Imunidade Adaptativa , Animais , Humanos , Sistema Imunitário/metabolismo , Imunidade Inata , Receptor PAR-2 , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA