Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
New Phytol ; 216(3): 939-954, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28742220

RESUMO

The pseudanthial inflorescences of the sunflower family, Asteraceae, mimic a solitary flower but are composed of multiple flowers. Our studies in Gerbera hybrida indicate functional diversification for SEPALLATA (SEP)-like MADS box genes that often function redundantly in other core eudicots. We conducted phylogenetic and expression analysis for eight SEP-like GERBERA REGULATOR OF CAPITULUM DEVELOPMENT (GRCD) genes, including previously unstudied gene family members. Transgenic gerbera plants were used to infer gene functions. Adding to the previously identified stamen and carpel functions for GRCD1 and GRCD2, two partially redundant genes, GRCD4 and GRCD5, were found to be indispensable for petal development. Stepwise conversion of floral organs into leaves in the most severe RNA interference lines suggest redundant and additive GRCD activities in organ identity regulation. We show conserved and redundant functions for several GRCD genes in regulation of flower meristem maintenance, while functional diversification for three SEP1/2/4 clade genes in regulation of inflorescence meristem patterning was observed. GRCD genes show both specialized and pleiotropic functions contributing to organ differentiation and flower meristem fate, and uniquely, to patterning of the inflorescence meristem. Altogether, we provide an example of how plant reproductive evolution has used conserved genetic modules for regulating the elaborate inflorescence architecture in Asteraceae.


Assuntos
Asteraceae/genética , Inflorescência/genética , Proteínas de Plantas/genética , Asteraceae/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Meristema/genética , Família Multigênica , Filogenia , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , Interferência de RNA
2.
Plant Physiol ; 172(1): 284-96, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27382139

RESUMO

The evolutionary success of Asteraceae, the largest family of flowering plants, has been attributed to the unique inflorescence architecture of the family, which superficially resembles an individual flower. Here, we show that Asteraceae inflorescences (flower heads, or capitula) resemble solitary flowers not only morphologically but also at the molecular level. By conducting functional analyses for orthologs of the flower meristem identity genes LEAFY (LFY) and UNUSUAL FLORAL ORGANS (UFO) in Gerbera hybrida, we show that GhUFO is the master regulator of flower meristem identity, while GhLFY has evolved a novel, homeotic function during the evolution of head-like inflorescences. Resembling LFY expression in a single flower meristem, uniform expression of GhLFY in the inflorescence meristem defines the capitulum as a determinate structure that can assume floral fate upon ectopic GhUFO expression. We also show that GhLFY uniquely regulates the ontogeny of outer, expanded ray flowers but not inner, compact disc flowers, indicating that the distinction of different flower types in Asteraceae is connected with their independent evolutionary origins from separate branching systems.


Assuntos
Asteraceae/genética , Flores/genética , Genes de Plantas/genética , Inflorescência/genética , Meristema/genética , Asteraceae/crescimento & desenvolvimento , Asteraceae/ultraestrutura , Evolução Molecular , Flores/crescimento & desenvolvimento , Flores/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Hibridização In Situ , Inflorescência/crescimento & desenvolvimento , Inflorescência/ultraestrutura , Meristema/crescimento & desenvolvimento , Meristema/ultraestrutura , Microscopia Eletrônica de Varredura , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
3.
J Exp Bot ; 68(17): 4839-4850, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29048562

RESUMO

According to the external coincidence model, photoperiodic flowering occurs when CONSTANS (CO) mRNA expression coincides with light in the afternoon of long days (LDs), leading to the activation of FLOWERING LOCUS T (FT). CO has evolved in Brassicaceae from other Group Ia CO-like (COL) proteins which do not control photoperiodic flowering in Arabidopsis. COLs in other species have evolved different functions as floral activators or even as repressors. To understand photoperiodic development in the perennial rosaceous model species woodland strawberry, we functionally characterized FvCO, the only Group Ia COL in its genome. We demonstrate that FvCO has a major role in the photoperiodic control of flowering and vegetative reproduction through runners. FvCO is needed to generate a bimodal rhythm of FvFT1 which encodes a floral activator in the LD accession Hawaii-4: a sharp FvCO expression peak at dawn is followed by the FvFT1 morning peak in LDs indicating possible direct regulation, but additional factors that may include FvGI and FvFKF1 are probably needed to schedule the second FvFT1 peak around dusk. These results demonstrate that although FvCO and FvFT1 play major roles in photoperiodic development, the CO-based external coincidence around dusk is not fully applicable to the woodland strawberry.


Assuntos
Flores/crescimento & desenvolvimento , Fragaria/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Flores/genética , Fragaria/crescimento & desenvolvimento , Fragaria/metabolismo , Fotoperíodo , Filogenia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
4.
Plant J ; 82(1): 163-73, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25720985

RESUMO

Photoperiod and temperature are major environmental signals affecting flowering in plants. Although molecular pathways mediating these signals have been well characterized in the annual model plant Arabidopsis, much less information is known in perennials. Many perennials including the woodland strawberry (Fragaria vesca L.) are induced to flower in response to decreasing photoperiod and temperature in autumn and they flower following spring. We showed earlier that, in contrast with Arabidopsis, the photoperiodic induction of flowering in strawberry occurs in short days (SD) when the decrease in FvFT1 (flowering locus T) and FvSOC1 (suppressor of the overexpression of constans1) expression leads to lower mRNA levels of the floral repressor, FvTFL1 (terminal flower1). By using transgenic lines and gene expression analyses, we show evidence that the temperature-mediated changes in the FvTFL1 mRNA expression set critical temperature limits for the photoperiodic flowering in strawberry. At temperatures below 13 °C, low expression level of FvTFL1 in both SD and long days (LD) allows flower induction to occur independently of the photoperiod. Rising temperature gradually increases FvTFL1 mRNA levels under LD, and at temperatures above 13 °C, SD is required for the flower induction that depends on the deactivation of FvSOC1 and FvTFL1. However, an unknown transcriptional activator, which functions independently of FvSOC1, enhances the expression of FvTFL1 at 23 °C preventing photoperiodic flowering. We suggest that the observed effect of the photoperiod × temperature interaction on FvTFL1 mRNA expression may allow strawberry to induce flowers in correct time in different climates.


Assuntos
Flores/fisiologia , Fragaria/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Transdução de Sinais , Flores/genética , Flores/efeitos da radiação , Fragaria/genética , Fragaria/efeitos da radiação , Fotoperíodo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA de Plantas/genética , Estações do Ano , Temperatura
5.
Plant Cell ; 25(9): 3296-310, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24038650

RESUMO

In the annual long-day plant Arabidopsis thaliana, suppressor of overexpression of constans1 (SOC1) integrates endogenous and environmental signals to promote flowering. We analyzed the function and regulation of the SOC1 homolog (Fragaria vesca [Fv] SOC1) in the perennial short-day plant woodland strawberry (Fragaria vesca). We found that Fv SOC1 overexpression represses flower initiation under inductive short days, whereas its silencing causes continuous flowering in both short days and noninductive long days, similar to mutants in the floral repressor Fv terminal flower1 (Fv TFL1). Molecular analysis of these transgenic lines revealed that Fv SOC1 activates Fv TFL1 in the shoot apex, leading to the repression of flowering in strawberry. In parallel, Fv SOC1 regulates the differentiation of axillary buds to runners or axillary leaf rosettes, probably through the activation of gibberellin biosynthetic genes. We also demonstrated that Fv SOC1 is regulated by photoperiod and Fv flowering locus T1, suggesting that it plays a central role in the photoperiodic control of both generative and vegetative growth in strawberry. In conclusion, we propose that Fv SOC1 is a signaling hub that regulates yearly cycles of vegetative and generative development through separate genetic pathways.


Assuntos
Fragaria/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais , Sequência de Bases , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Fragaria/crescimento & desenvolvimento , Fragaria/efeitos da radiação , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Giberelinas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Fotoperíodo , Filogenia , Reguladores de Crescimento de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Estações do Ano , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Análise de Sequência de DNA
6.
Plant Physiol ; 159(3): 1043-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22566495

RESUMO

Photoperiodic flowering has been extensively studied in the annual short-day and long-day plants rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana), whereas less is known about the control of flowering in perennials. In the perennial wild strawberry, Fragaria vesca (Rosaceae), short-day and perpetual flowering long-day accessions occur. Genetic analyses showed that differences in their flowering responses are caused by a single gene, SEASONAL FLOWERING LOCUS, which may encode the F. vesca homolog of TERMINAL FLOWER1 (FvTFL1). We show through high-resolution mapping and transgenic approaches that FvTFL1 is the basis of this change in flowering behavior and demonstrate that FvTFL1 acts as a photoperiodically regulated repressor. In short-day F. vesca, long photoperiods activate FvTFL1 mRNA expression and short days suppress it, promoting flower induction. These seasonal cycles in FvTFL1 mRNA level confer seasonal cycling of vegetative and reproductive development. Mutations in FvTFL1 prevent long-day suppression of flowering, and the early flowering that then occurs under long days is dependent on the F. vesca homolog of FLOWERING LOCUS T. This photoperiodic response mechanism differs from those described in model annual plants. We suggest that this mechanism controls flowering within the perennial growth cycle in F. vesca and demonstrate that a change in a single gene reverses the photoperiodic requirements for flowering.


Assuntos
Flores/genética , Flores/fisiologia , Fragaria/genética , Fragaria/fisiologia , Mutação/genética , Fotoperíodo , Proteínas de Plantas/genética , Ecótipo , Fragaria/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Proteínas de Plantas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Tempo
7.
Front Plant Sci ; 14: 1126717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998678

RESUMO

Oat-based value-added products have increased their value as healthy foodstuff. Fusarium head blight (FHB) infections and the mycotoxins accumulated to the oat seeds, however, pose a challenge to oat production. The FHB infections are predicted to become more prevalent in the future changing climates and under more limited use of fungicides. Both these factors increase the pressure for breeding new resistant cultivars. Until now, however, genetic links in oats against FHB infection have been difficult to identify. Therefore, there is a great need for more effective breeding efforts, including improved phenotyping methods allowing time series analysis and the identification of molecular markers during disease progression. To these ends, dissected spikelets of several oat genotypes with different resistance profiles were studied by image-based methods during disease progression by Fusarium culmorum or F. langsethiae species. The chlorophyll fluorescence of each pixel in the spikelets was recorded after inoculation by the two Fusarium spp., and the progression of the infections was analyzed by calculating the mean maximum quantum yield of PSII (Fv/Fm) values for each spikelet. The recorded values were (i) the change in the photosynthetically active area of the spikelet as percentage of its initial size, and (ii) the mean of Fv/Fm values of all fluorescent pixels per spikelet post inoculation, both indicative of the progression of the FHB disease. The disease progression was successfully monitored, and different stages of the infection could be defined along the time series. The data also confirmed the differential rate of disease progression by the two FHB causal agents. In addition, oat varieties with variable responses to the infections were indicated.

8.
BMC Plant Biol ; 9: 122, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19785732

RESUMO

BACKGROUND: We are studying the regulation of flowering in perennial plants by using diploid wild strawberry (Fragaria vesca L.) as a model. Wild strawberry is a facultative short-day plant with an obligatory short-day requirement at temperatures above 15 degrees C. At lower temperatures, however, flowering induction occurs irrespective of photoperiod. In addition to short-day genotypes, everbearing forms of wild strawberry are known. In 'Baron Solemacher' recessive alleles of an unknown repressor, SEASONAL FLOWERING LOCUS (SFL), are responsible for continuous flowering habit. Although flower induction has a central effect on the cropping potential, the molecular control of flowering in strawberries has not been studied and the genetic flowering pathways are still poorly understood. The comparison of everbearing and short-day genotypes of wild strawberry could facilitate our understanding of fundamental molecular mechanisms regulating perennial growth cycle in plants. RESULTS: We have searched homologs for 118 Arabidopsis flowering time genes from Fragaria by EST sequencing and bioinformatics analysis and identified 66 gene homologs that by sequence similarity, putatively correspond to genes of all known genetic flowering pathways. The expression analysis of 25 selected genes representing various flowering pathways did not reveal large differences between the everbearing and the short-day genotypes. However, putative floral identity and floral integrator genes AP1 and LFY were co-regulated during early floral development. AP1 mRNA was specifically accumulating in the shoot apices of the everbearing genotype, indicating its usability as a marker for floral initiation. Moreover, we showed that flowering induction in everbearing 'Baron Solemacher' and 'Hawaii-4' was inhibited by short-day and low temperature, in contrast to short-day genotypes. CONCLUSION: We have shown that many central genetic components of the flowering pathways in Arabidopsis can be identified from strawberry. However, novel regulatory mechanisms exist, like SFL that functions as a switch between short-day/low temperature and long-day/high temperature flowering responses between the short-day genotype and the everbearing 'Baron Solemacher'. The identification of putative flowering gene homologs and AP1 as potential marker gene for floral initiation will strongly facilitate the exploration of strawberry flowering pathways.


Assuntos
Flores/crescimento & desenvolvimento , Fragaria/genética , Perfilação da Expressão Gênica , Genes de Plantas , Sequência de Aminoácidos , Biologia Computacional , DNA de Plantas/genética , Etiquetas de Sequências Expressas , Flores/genética , Fragaria/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Genótipo , Dados de Sequência Molecular , Fotoperíodo , Alinhamento de Sequência , Análise de Sequência de DNA , Temperatura
9.
Sci Rep ; 9(1): 17762, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780719

RESUMO

Environmentally-responsive genes can affect fruit red colour via the activation of MYB transcription factors. The apple B-box (BBX) gene, BBX33/CONSTANS-like 11 (COL11) has been reported to influence apple red-skin colour in a light- and temperature-dependent manner. To further understand the role of apple BBX genes, other members of the BBX family were examined for effects on colour regulation. Expression of 23 BBX genes in apple skin was analysed during fruit development. We investigated the diurnal rhythm of expression of the BBX genes, the anthocyanin biosynthetic genes and a MYB activator, MYB10. Transactivation assays on the MYB10 promoter, showed that BBX proteins 1, 17, 15, 35, 51, and 54 were able to directly function as activators. Using truncated versions of the MYB10 promoter, a key region was identified for activation by BBX1. BBX1 enhanced the activation of MYB10 and MdbHLH3 on the promoter of the anthocyanin biosynthetic gene DFR. In transformed apple lines, over-expression of BBX1 reduced internal ethylene content and altered both cyanidin concentration and associated gene expression. We propose that, along with environmental signals, the control of MYB10 expression by BBXs in 'Royal Gala' fruit involves the integration of the expression of multiple BBXs to regulate fruit colour.


Assuntos
Antocianinas/genética , Regulação da Expressão Gênica de Plantas , Malus/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Antocianinas/metabolismo , Vias Biossintéticas , Frutas/genética , Frutas/metabolismo , Genes de Plantas , Malus/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Ativação Transcricional
10.
Front Plant Sci ; 8: 416, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28400782

RESUMO

Flowering time control integrates endogenous as well as environmental signals to promote flower development. The pathways and molecular networks involved are complex and integrate many modes of signal transduction. In plants ubiquitin mediated protein degradation pathway has been proposed to be as important mode of signaling as phosphorylation and transcription. To systematically study the role of ubiquitin signaling in the molecular regulation of flowering we have taken a genomic approach to identify flower related Ubiquitin Proteasome System components. As a large and versatile gene family the RING type ubiquitin E3 ligases were chosen as targets of the genomic screen. The complete list of Arabidopsis RING E3 ligases were retrieved and verified in the Arabidopsis genome v11 and their differential expression was used for their categorization into flower organs or developmental stages. Known regulators of flowering time or floral organ development were identified in these categories through literature search and representative mutants for each category were purchased for functional characterization by growth and morphological phenotyping. To this end, a workflow was developed for high throughput phenotypic screening of growth, morphology and flowering of nearly a thousand Arabidopsis plants in one experimental round.

11.
Hortic Res ; 4: 17020, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580150

RESUMO

Flowering time is an important trait that affects survival, reproduction and yield in both wild and cultivated plants. Therefore, many studies have focused on the identification of flowering time quantitative trait locus (QTLs) in different crops, and molecular control of this trait has been extensively investigated in model species. Here we report the mapping of QTLs for flowering time and vegetative traits in a large woodland strawberry mapping population that was phenotyped both under field conditions and in a greenhouse after flower induction in the field. The greenhouse experiment revealed additive QTLs in three linkage groups (LG), two on both LG4 and LG7, and one on LG6 that explain about half of the flowering time variance in the population. Three of the QTLs were newly identified in this study, and one co-localized with the previously characterized FvTFL1 gene. An additional strong QTL corresponding to previously mapped PFRU was detected in both field and greenhouse experiments indicating that gene(s) in this locus can control the timing of flowering in different environments in addition to the duration of flowering and axillary bud differentiation to runners and branch crowns. Several putative flowering time genes were identified in these QTL regions that await functional validation. Our results indicate that a few major QTLs may control flowering time and axillary bud differentiation in strawberries. We suggest that the identification of causal genes in the diploid strawberry may enable fine tuning of flowering time and vegetative growth in the closely related octoploid cultivated strawberry.

12.
Front Plant Sci ; 5: 271, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966865

RESUMO

Control of flowering in the perennial model, the woodland strawberry (Fragaria vesca L.), involves distinct molecular mechanisms that result in contrasting photoperiodic flowering responses and growth cycles in different accessions. The F. vesca homolog of TERMINAL FLOWER1 (FvTFL1) functions as a key floral repressor that causes short-day (SD) requirement of flowering and seasonal flowering habit in the SD strawberry. In contrast, perpetual flowering F. vesca accessions lacking functional FvTFL1 show FLOWERING LOCUS T (FvFT1)-dependent early flowering specifically under long-days (LD). We show here that the end-of-day far-red (FR) and blue (B) light activate the expression of FvFT1 and the F. vesca homolog of SUPPRESSOR OF THE OVEREXPRESSION OF CONSTANS (FvSOC1) in both SD and LD strawberries, whereas low expression levels are detected in red (R) and SD treatments. By using transgenic lines, we demonstrate that FvFT1 advances flowering under FR and B treatments compared to R and SD treatments in the LD strawberry, and that FvSOC1 is specifically needed for the B light response. In the SD strawberry, flowering responses to these light quality treatments are reversed due to up-regulation of the floral repressor FvTFL1 in parallel with FvFT1 and FvSOC1. Our data highlights the central role of FvFT1 in the light quality dependent flower induction in the LD strawberry and demonstrates that FvTFL1 reverses not only photoperiodic requirements but also light quality effects on flower induction in the SD strawberry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA