Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
C R Biol ; 346(S2): 59-63, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38113101

RESUMO

Gillian Butler-Browne began working on muscle at the Institut Pasteur in the laboratory of François Gros in 1978. She characterized the expression profile of different myosin isoforms during both human and rodent development. Vincent Mouly joined this laboratory for his PhD in 1982, and defined the different populations of myoblasts appearing during development in birds and then in humans. Together, they demonstrated the impact of the limit in proliferation of the precursor cells on the regenerative capacity of human skeletal muscle, and their group developed models to evaluate the regenerative potential of skeletal muscle in vitro, measuring the telomeric erosion, and identified the involvement of a stress pathway in the proliferative arrest of muscle progenitors. A platform to produce human immortalized muscle cell lines was the successful result of this research, initiated with François Gros and W. E. Wright. The in vivo regenerative potential of human muscle cells was evaluated by injection into muscles of immunodeficient mice. Their group in collaboration with the clinical team of Professor Jean Lacau St-Guily and Professor Sophie Perié completed a successful autologous myoblast transplantation clinical trial for Oculo-pharyngeal muscular dystrophy. This common scientific career was made possible thanks to the precious and always benevolent support of François Gros.


Gillian Butler-Browne a commencé à travailler sur le muscle à l'Institut Pasteur dans le laboratoire de François Gros en 1978. Elle a caractérisé le profil d'expression des différentes isoformes de myosine au cours du développement de l'homme et du rongeur. Vincent Mouly a rejoint ce laboratoire pour son doctorat en 1982, et a défini les différentes populations de myoblastes apparaissant au cours du développement chez les oiseaux puis chez l'homme. Ensemble, ils ont démontré l'impact de la limite de prolifération des cellules précurseurs sur la capacité de régénération du muscle squelettique humain, et leur groupe a développé des modèles pour évaluer le potentiel de régénération du muscle squelettique in vitro, en mesurant l'érosion télomérique, et a identifié l'implication d'une voie de stress dans l'arrêt de la prolifération des progéniteurs musculaires. Une plateforme de production de lignées de cellules musculaires humaines immortalisées a été le résultat fructueux de cette recherche, initiée avec François Gros et W. E. Wright. Le potentiel de régénération in vivo des cellules musculaires humaines a été évalué par injection dans des muscles de souris immunodéficientes. Leur groupe, en collaboration avec l'équipe clinique des professeurs Jean-Lacau-St Guily et Sophie Perié, a réalisé avec succès un essai clinique de transplantation autologue de myoblastes visant à traiter la dystrophie musculaire oculo-pharyngée. Cette carrière scientifique commune a été rendue possible par le soutien précieux et toujours bienveillant de François Gros.


Assuntos
Mioblastos , Feminino , Humanos , Camundongos , Animais , Mioblastos/metabolismo , Linhagem Celular
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167094, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428683

RESUMO

Muscle wasting diseases, such as cancer cachexia and age-associated sarcopenia, have a profound and detrimental impact on functional independence, quality of life, and survival. Our understanding of the underlying mechanisms is currently limited, which has significantly hindered the development of targeted therapies. In this study, we explored the possibility that the streptococcal quorum sensing peptide Competence Stimulating Peptide 7 (CSP-7) might be a previously unidentified contributor to clinical muscle wasting. We found that CSP-7 selectively triggers muscle cell inflammation in vitro, specifically the release of IL-6. Furthermore, we demonstrated that CSP-7 can traverse the gastrointestinal barrier in vitro and is present in the systemic circulation in humans in vivo. Importantly, CSP-7 was associated with a muscle wasting phenotype in mice in vivo. Overall, our findings provide new mechanistic insights into the pathophysiology of muscle inflammation and wasting.


Assuntos
Caquexia , Percepção de Quorum , Humanos , Animais , Camundongos , Percepção de Quorum/fisiologia , Qualidade de Vida , Peptídeos , Inflamação , Atrofia Muscular , Músculos
3.
EMBO Mol Med ; 16(4): 927-944, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438561

RESUMO

Cell therapy for muscular dystrophy has met with limited success, mainly due to the poor engraftment of donor cells, especially in fibrotic muscle at an advanced stage of the disease. We developed a cell-mediated exon skipping that exploits the multinucleated nature of myofibers to achieve cross-correction of resident, dystrophic nuclei by the U7 small nuclear RNA engineered to skip exon 51 of the dystrophin gene. We observed that co-culture of genetically corrected human DMD myogenic cells (but not of WT cells) with their dystrophic counterparts at a ratio of either 1:10 or 1:30 leads to dystrophin production at a level several folds higher than what predicted by simple dilution. This is due to diffusion of U7 snRNA to neighbouring dystrophic resident nuclei. When transplanted into NSG-mdx-Δ51mice carrying a mutation of exon 51, genetically corrected human myogenic cells produce dystrophin at much higher level than WT cells, well in the therapeutic range, and lead to force recovery even with an engraftment of only 3-5%. This level of dystrophin production is an important step towards clinical efficacy for cell therapy.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Distrofina/genética , Éxons , Vetores Genéticos , Camundongos Endogâmicos mdx , Músculos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
4.
Sci Adv ; 10(22): eadn7732, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38809976

RESUMO

Structural maintenance of chromosomes flexible hinge domain-containing 1 (SMCHD1) is a noncanonical SMC protein and an epigenetic regulator. Mutations in SMCHD1 cause facioscapulohumeral muscular dystrophy (FSHD), by overexpressing DUX4 in muscle cells. Here, we demonstrate that SMCHD1 is a key regulator of alternative splicing in various cell types. We show how SMCHD1 loss causes splicing alterations of DNMT3B, which can lead to hypomethylation and DUX4 overexpression. Analyzing RNA sequencing data from muscle biopsies of patients with FSHD and Smchd1 knocked out cells, we found mis-splicing of hundreds of genes upon SMCHD1 loss. We conducted a high-throughput screen of splicing factors, revealing the involvement of the splicing factor RBM5 in the mis-splicing of DNMT3B. Subsequent RNA immunoprecipitation experiments confirmed that SMCHD1 is required for RBM5 recruitment. Last, we show that mis-splicing of DNMT3B leads to hypomethylation of the D4Z4 region and to DUX4 overexpression. These results suggest that DNMT3B mis-splicing due to SMCHD1 loss plays a major role in FSHD pathogenesis.


Assuntos
Proteínas Cromossômicas não Histona , DNA (Citosina-5-)-Metiltransferases , Metilação de DNA , DNA Metiltransferase 3B , Proteínas de Homeodomínio , Distrofia Muscular Facioescapuloumeral , Humanos , Processamento Alternativo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-39113268

RESUMO

BACKGROUND: Exercise is widely considered to have beneficial impact on skeletal muscle aging. In addition, there are also several studies demonstrating a positive effect of exercise on muscular dystrophies. Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant inherited neuromuscular disorder caused by mutations in the PAPBN1 gene. These mutations consist in short (1-8) and meiotically stable GCN trinucleotide repeat expansions in its coding region responsible for the formation of PAPBN1 intranuclear aggregates. This study aims to characterize the effects of two types of chronic exercise, resistance and endurance, on the OPMD skeletal muscle phenotype using a relevant murine model of OPMD. METHODS: In this study, we tested two protocols of exercise. In the first, based on endurance exercise, FvB (wild-type) and A17 (OPMD) mice underwent a 6-week-long motorized treadmill protocol consisting in three sessions per week of running 20 cm/s for 20 min. In the second protocol, based on resistance exercise generated by chronic mechanical overload (OVL), surgical removal of gastrocnemius and soleus muscles was performed, inducing hypertrophy of the plantaris muscle. In both types of exercise, muscles of A17 and FvB mice were compared with those of respective sedentary mice. For all the groups, force measurement, muscle histology, and molecular analyses were conducted. RESULTS: Following the endurance exercise protocol, we did not observe any major changes in the muscle physiological parameters, but an increase in the number of PABPN1 intranuclear aggregates in both tibialis anterior (+24%, **P = 0.0026) and gastrocnemius (+18%, ****P < 0.0001) as well as enhanced collagen deposition (+20%, **P = 0.0064 in the tibialis anterior; +35%, **P = 0.0042 in the gastrocnemius) in the exercised A17 OPMD mice. In the supraphysiological resistance overload protocol, we also observed an increased collagen deposition (×2, ****P < 0.0001) in the plantaris muscle of A17 OPMD mice which was associated with larger muscle mass (×2, ****P < 0.0001) and fibre cross sectional area (×2, ***P = 0.0007) and increased absolute maximal force (×2, ****P < 0.0001) as well as a reduction in PABPN1 aggregate number (-16%, ****P < 0.0001). CONCLUSIONS: Running exercise and mechanical overload led to very different outcome in skeletal muscles of A17 mice. Both types of exercise enhanced collagen deposition but while the running protocol increased aggregates, the OVL reduced them. More importantly OVL reversed muscle atrophy and maximal force in the A17 mice. Our study performed in a relevant model gives an indication of the effect of different types of exercise on OPMD muscle which should be further evaluated in humans for future recommendations as a part of the lifestyle of individuals with OPMD.

6.
iScience ; 27(6): 109930, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38832025

RESUMO

Historically, cellular models have been used as a tool to study myotonic dystrophy type 1 (DM1) and the validation of therapies in said pathology. However, there is a need for in vitro models that represent the clinical heterogeneity observed in patients with DM1 that is lacking in classical models. In this study, we immortalized three DM1 muscle lines derived from patients with different DM1 subtypes and clinical backgrounds and characterized them at the genetic, epigenetic, and molecular levels. All three cell lines display DM1 hallmarks, such as the accumulation of RNA foci, MBNL1 sequestration, splicing alterations, and reduced fusion. In addition, alterations in early myogenic markers, myotube diameter and CTCF1 DNA methylation were also found in DM1 cells. Notably, the new lines show a high level of heterogeneity in both the size of the CTG expansion and the aforementioned molecular alterations. Importantly, these immortalized cells also responded to previously tested therapeutics. Altogether, our results show that these three human DM1 cellular models are suitable to study the pathophysiological heterogeneity of DM1 and to test future therapeutic options.

7.
Nat Commun ; 15(1): 3270, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627364

RESUMO

Epigenetic defects caused by hereditary or de novo mutations are implicated in various human diseases. It remains uncertain whether correcting the underlying mutation can reverse these defects in patient cells. Here we show by the analysis of myotonic dystrophy type 1 (DM1)-related locus that in mutant human embryonic stem cells (hESCs), DNA methylation and H3K9me3 enrichments are completely abolished by repeat excision (CTG2000 expansion), whereas in patient myoblasts (CTG2600 expansion), repeat deletion fails to do so. This distinction between undifferentiated and differentiated cells arises during cell differentiation, and can be reversed by reprogramming of gene-edited myoblasts. We demonstrate that abnormal methylation in DM1 is distinctively maintained in the undifferentiated state by the activity of the de novo DNMTs (DNMT3b in tandem with DNMT3a). Overall, the findings highlight a crucial difference in heterochromatin maintenance between undifferentiated (sequence-dependent) and differentiated (sequence-independent) cells, thus underscoring the role of differentiation as a locking mechanism for repressive epigenetic modifications at the DM1 locus.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/genética , Heterocromatina/genética , Diferenciação Celular/genética , Metilação de DNA , Epigênese Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA