Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
NMR Biomed ; 35(9): e4754, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35485596

RESUMO

Glioblastoma is an aggressive and fast-growing brain tumor with poor prognosis. Predicting the expected survival of patients with glioblastoma is a key task for efficient treatment and surgery planning. Survival predictions could be enhanced by means of a radiomic system. However, these systems demand high numbers of multicontrast images, the acquisitions of which are time consuming, giving rise to patient discomfort and low healthcare system efficiency. Synthetic MRI could favor deployment of radiomic systems in the clinic by allowing practitioners not only to reduce acquisition time, but also to retrospectively complete databases or to replace artifacted images. In this work we analyze the replacement of an actually acquired MR weighted image by a synthesized version to predict survival of glioblastoma patients with a radiomic system. Each synthesized version was realistically generated from two acquired images with a deep learning synthetic MRI approach based on a convolutional neural network. Specifically, two weighted images were considered for the replacement one at a time, a T2w and a FLAIR, which were synthesized from the pairs T1w and FLAIR, and T1w and T2w, respectively. Furthermore, a radiomic system for survival prediction, which can classify patients into two groups (survival >480 days and ≤ 480 days), was built. Results show that the radiomic system fed with the synthesized image achieves similar performance compared with using the acquired one, and better performance than a model that does not include this image. Hence, our results confirm that synthetic MRI does add to glioblastoma survival prediction within a radiomics-based approach.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
2.
Front Neuroimaging ; 2: 1055463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554645

RESUMO

Gadolinium-based contrast agents (GBCAs) have become a crucial part of MRI acquisitions in neuro-oncology for the detection, characterization and monitoring of brain tumors. However, contrast-enhanced (CE) acquisitions not only raise safety concerns, but also lead to patient discomfort, the need of more skilled manpower and cost increase. Recently, several proposed deep learning works intend to reduce, or even eliminate, the need of GBCAs. This study reviews the published works related to the synthesis of CE images from low-dose and/or their native -non CE- counterparts. The data, type of neural network, and number of input modalities for each method are summarized as well as the evaluation methods. Based on this analysis, we discuss the main issues that these methods need to overcome in order to become suitable for their clinical usage. We also hypothesize some future trends that research on this topic may follow.

3.
Comput Methods Programs Biomed ; 210: 106371, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34525411

RESUMO

BACKGROUND AND OBJECTIVE: Synthetic magnetic resonance imaging (MRI) is a low cost procedure that serves as a bridge between qualitative and quantitative MRI. However, the proposed methods require very specific sequences or private protocols which have scarcely found integration in clinical scanners. We propose a learning-based approach to compute T1, T2, and PD parametric maps from only a pair of T1- and T2-weighted images customarily acquired in the clinical routine. METHODS: Our approach is based on a convolutional neural network (CNN) trained with synthetic data; specifically, a synthetic dataset with 120 volumes was constructed from the anatomical brain model of the BrainWeb tool and served as the training set. The CNN learns an end-to-end mapping function to transform the input T1- and T2-weighted images to their underlying T1, T2, and PD parametric maps. Then, conventional weighted images unseen by the network are analytically synthesized from the parametric maps. The network can be fine tuned with a small database of actual weighted images and maps for better performance. RESULTS: This approach is able to accurately compute parametric maps from synthetic brain data achieving normalized squared error values predominantly below 1%. It also yields realistic parametric maps from actual MR brain acquisitions with T1, T2, and PD values in the range of the literature and with correlation values above 0.95 compared to the T1 and T2 maps obtained from relaxometry sequences. Further, the synthesized weighted images are visually realistic; the mean square error values are always below 9% and the structural similarity index is usually above 0.90. Network fine tuning with actual maps improves performance, while training exclusively with a small database of actual maps shows a performance degradation. CONCLUSIONS: These results show that our approach is able to provide realistic parametric maps and weighted images out of a CNN that (a) is trained with a synthetic dataset and (b) needs only two inputs, which are in turn obtained from a common full-brain acquisition that takes less than 8 min of scan time. Although a fine tuning with actual maps improves performance, synthetic data is crucial to reach acceptable performance levels. Hence, we show the utility of our approach for both quantitative MRI in clinical viable times and for the synthesis of additional weighted images to those actually acquired.


Assuntos
Aprendizado Profundo , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação
4.
Comput Methods Programs Biomed ; 207: 106143, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34029830

RESUMO

BACKGROUND AND OBJECTIVE: Recent research has reported methods that reconstruct cardiac MR images acquired with acceleration factors as high as 15 in Cartesian coordinates. However, the computational cost of these techniques is quite high, taking about 40 min of CPU time in a typical current machine. This delay between acquisition and final result can completely rule out the use of MRI in clinical environments in favor of other techniques, such as CT. In spite of this, reconstruction methods reported elsewhere can be parallelized to a high degree, a fact that makes them suitable for GPU-type computing devices. This paper contributes a vendor-independent, device-agnostic implementation of such a method to reconstruct 2D motion-compensated, compressed-sensing MRI sequences in clinically viable times. METHODS: By leveraging our OpenCLIPER framework, the proposed system works in any computing device (CPU, GPU, DSP, FPGA, etc.), as long as an OpenCL implementation is available, and development is significantly simplified versus a pure OpenCL implementation. In OpenCLIPER, the problem is partitioned in independent black boxes which may be connected as needed, while device initialization and maintenance is handled automatically. Parallel implementations of both a groupwise FFD-based registration method, as well as a multicoil extension of the NESTA algorithm have been carried out as processes of OpenCLIPER. Our platform also includes significant development and debugging aids. HIP code and precompiled libraries can be integrated seamlessly as well since OpenCLIPER makes data objects shareable between OpenCL and HIP. This also opens an opportunity to include CUDA source code (via HIP) in prospective developments. RESULTS: The proposed solution can reconstruct a whole 12-14 slice CINE volume acquired in 19-32 coils and 20 phases, with an acceleration factor of ranging 4-8, in a few seconds, with results comparable to another popular platform (BART). If motion compensation is included, reconstruction time is in the order of one minute. CONCLUSIONS: We have obtained clinically-viable times in GPUs from different vendors, with delays in some platforms that do not have correspondence with its price in the market. We also contribute a parallel groupwise registration subsystem for motion estimation/compensation and a parallel multicoil NESTA subsystem for l1-l2-norm problem solving.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Estudos Prospectivos , Radiografia , Software
5.
IEEE J Biomed Health Inform ; 23(4): 1702-1709, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30207968

RESUMO

Medical image processing is often limited by the computational cost of the involved algorithms. Whereas dedicated computing devices (GPUs in particular) exist and do provide significant efficiency boosts, they have an extra cost of use in terms of housekeeping tasks (device selection and initialization, data streaming, synchronization with the CPU, and others), which may hinder developers from using them. This paper describes an OpenCL-based framework that is capable of handling dedicated computing devices seamlessly and that allows the developer to concentrate on image processing tasks. The framework handles automatically device discovery and initialization, data transfers to and from the device and the file system and kernel loading and compiling. Data structures need to be defined only once independently of the computing device; code is unique, consequently, for every device, including the host CPU. Pinned memory/buffer mapping is used to achieve maximum performance in data transfers. Code fragments included in the paper show how the computing device is almost immediately and effortlessly available to the users algorithms, so they can focus on productive work. Code required for device selection and initialization, data loading and streaming and kernel compilation is minimal and systematic. Algorithms can be thought of as mathematical operators (called processes), with input, output and parameters, and they may be chained one after another easily and efficiently. Also for efficiency, processes can have their initialization work split from their core workload, so process chains and loops do not incur in performance penalties. Algorithm code is independent of the device type targeted.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Software , Algoritmos , Gráficos por Computador , Diagnóstico por Imagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA