Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biochemistry (Mosc) ; 88(5): 640-654, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37331710

RESUMO

Structure and function of bacterial nucleoid is controlled by the nucleoid-associated proteins (NAP). In any phase of growth, various NAPs, acting sequentially, condense nucleoid and facilitate formation of its transcriptionally active structure. However, in the late stationary phase, only one of the NAPs, Dps protein, is strongly expressed, and DNA-protein crystals are formed that transform nucleoid into a static, transcriptionally inactive structure, effectively protected from the external influences. Discovery of crystal structures in living cells and association of this phenomenon with the bacterial resistance to antibiotics has aroused great interest in studying this phenomenon. The aim of this work is to obtain and compare structures of two related NAPs (HU and IHF), since they are the ones that accumulate in the cell at the late stationary stage of growth, which precedes formation of the protective DNA-Dps crystalline complex. For structural studies, two complementary methods were used in the work: small-angle X-ray scattering (SAXS) as the main method for studying structure of proteins in solution, and dynamic light scattering as a complementary one. To interpret the SAXS data, various approaches and computer programs were used (in particular, the evaluation of structural invariants, rigid body modeling and equilibrium mixture analysis in terms of the volume fractions of its components were applied), which made it possible to determine macromolecular characteristics and obtain reliable 3D structural models of various oligomeric forms of HU and IHF proteins with ~2 nm resolution typical for SAXS. It was shown that these proteins oligomerize in solution to varying degrees, and IHF is characterized by the presence of large oligomers consisting of initial dimers arranged in a chain. An analysis of the experimental and published data made it possible to hypothesize that just before the Dps expression, it is IHF that forms toroidal structures previously observed in vivo and prepares the platform for formation of DNA-Dps crystals. The results obtained are necessary for further investigation of the phenomenon of biocrystal formation in bacterial cells and finding ways to overcome resistance of various pathogens to external conditions.


Assuntos
Proteínas de Ligação a DNA , Hidrodinâmica , Proteínas de Ligação a DNA/metabolismo , Espalhamento a Baixo Ângulo , DNA Bacteriano/metabolismo , Difração de Raios X , Proteínas de Bactérias/metabolismo , DNA
2.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239879

RESUMO

In response to adverse environmental factors, Escherichia coli cells actively produce Dps proteins which form ordered complexes (biocrystals) with bacterial DNA to protect the genome. The effect of biocrystallization has been described extensively in the scientific literature; furthermore, to date, the structure of the Dps-DNA complex has been established in detail in vitro using plasmid DNA. In the present work, for the first time, Dps complexes with E. coli genomic DNA were studied in vitro using cryo-electron tomography. We demonstrate that genomic DNA forms one-dimensional crystals or filament-like assemblies which transform into weakly ordered complexes with triclinic unit cells, similar to what is observed for plasmid DNA. Changing such environmental factors as pH and KCl and MgCl2 concentrations leads to the formation of cylindrical structures.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética
3.
J Biol Chem ; 296: 100534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33713705

RESUMO

The insulin receptor (IR), insulin-like growth factor 1 receptor (IGF-1R), and insulin receptor-related receptor (IRR) form a mini family of predimerized receptor-like tyrosine kinases. IR and IGF-1R bind to their peptide agonists triggering metabolic and cell growth responses. In contrast, IRR, despite sharing with them a strong sequence homology, has no peptide-like agonist but can be activated by mildly alkaline media. The spatial structure and activation mechanisms of IRR have not been established yet. The present work represents the first account of a structural analysis of a predimerized receptor-like tyrosine kinase by high-resolution atomic force microscopy in their basal and activated forms. Our data suggest that in neutral media, inactive IRR has two conformations, where one is symmetrical and highly similar to the inactive Λ/U-shape of IR and IGF-1R ectodomains, whereas the second is drop-like and asymmetrical resembling the IRR ectodomain in solution. We did not observe complexes of IRR intracellular catalytic domains of the inactive receptor forms. At pH 9.0, we detected two presumably active IRR conformations, Γ-shaped and T-shaped. Both of conformations demonstrated formation of the complex of their intracellular catalytic domains responsible for autophosphorylation. The existence of two active IRR forms correlates well with the previously described positive cooperativity of the IRR activation. In conclusion, our data provide structural insights into the molecular mechanisms of alkali-induced IRR activation under mild native conditions that could be valuable for interpretation of results of IR and IGF-IR structural studies.


Assuntos
Receptor de Insulina/química , Receptor de Insulina/metabolismo , Humanos , Fosforilação , Conformação Proteica , Relação Estrutura-Atividade
4.
Biochemistry (Mosc) ; 87(6): 511-523, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35790408

RESUMO

DNA-binding protein from starved cells (Dps) takes a special place among dodecamer mini-ferritins. Its most important function is protection of bacterial genome from various types of destructive external factors via in cellulo Dps-DNA co-crystallization. This protective response results in the emergence of bacterial resistance to antibiotics and other drugs. The protective properties of Dps have attracted a significant attention of researchers. However, Dps has another equally important functional role. Being a ferritin-like protein, Dps acts as an iron depot and protects bacterial cells from the oxidative damage initiated by the excess of iron. Here we investigated formation of iron oxide nanoparticles in the internal cavity of the Dps dodecamer. We used anomalous small-angle X-ray scattering as the main research technique, which allows to examine the structure of metal-containing biological macromolecules and to analyze the size distribution of metal nanoparticles formed in them. The contributions of protein and metal components to total scattering were distinguished by varying the energy of the incident X-ray radiation near the edge of the metal atom absorption band (the K-band for iron). We examined Dps specimens containing 50, 500, and 2000 iron atoms per protein dodecamer. Analysis of the particle size distribution showed that, depending on the iron content in the solution, the size of the nanoparticles formed inside the protein molecule was 2 to 4 nm and the growth of metal nanoparticles was limited by the size of the protein inner cavity. We also found some amount of iron ions in the Dps surface layer. This layer is very important for the protein to perform its protective functions, since the surface-located N-terminal domains determine the nature of interactions between Dps and DNA. In general, the results obtained in this work can be useful for the next step in studying the Dps phenomenon, as well as in creating biocompatible and solution-stabilized metal nanoparticles.


Assuntos
Proteínas de Bactérias , Ferritinas , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Ferritinas/química , Ferro/metabolismo , Nanopartículas Magnéticas de Óxido de Ferro , Raios X
5.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628121

RESUMO

Dps (DNA-binding protein from starved cells) is well known for the structural protection of bacterial DNA by the formation of highly ordered intracellular assemblies under stress conditions. Moreover, this ferritin-like protein can perform fast oxidation of ferrous ions and subsequently accumulate clusters of ferric ions in its nanocages, thus providing the bacterium with physical and chemical protection. Here, cryo-electron microscopy was used to study the accumulation of iron ions in the nanocage of a Dps protein from Escherichia coli. We demonstrate that Fe2+ concentration in the solution and incubation time have an insignificant effect on the volume and the morphology of iron minerals formed in Dps nanocages. However, an increase in the Fe2+ level leads to an increase in the proportion of larger clusters and the clusters themselves are composed of discrete ~1-1.5 nm subunits.


Assuntos
Proteínas de Escherichia coli , Ferritinas , Proteínas da Membrana Bacteriana Externa/genética , Microscopia Crioeletrônica , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Ferritinas/metabolismo , Íons/metabolismo , Ferro/metabolismo
6.
Biochemistry (Mosc) ; 86(5): 551-562, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33993858

RESUMO

It was recently found that the primary transcripts of some microRNA genes (pri-miRNAs) are able to express peptides with 12 to 40 residues in length. These peptides, called miPEPs, participate in the transcriptional regulation of their own pri-miRNAs. In our previous studies, we used bioinformatic approach for comparative analysis of pri-miRNA sequences in plant genomes to identify a new group of miPEPs (miPEP-156a peptides) encoded by pri-miR156a in several dozen species of the Brassicaceae family. Exogenous miPEP-156a peptides could efficiently penetrate into the plant seedlings through the root system and spread systemically to the leaves. The peptides produced moderate morphological effect accelerating primary root growth. In parallel, the miPEP-156a peptides upregulated expression of their own pri-miR156a. Importantly, the observed effects at both morphological and molecular levels correlated with the peptide ability to quickly translocate into the cell nucleus and to bind chromatin. In this work, we established secondary structure of the miPEP-156a and demonstrated its changes induced by formation of the peptide complex with DNA.


Assuntos
Brassicaceae/metabolismo , MicroRNAs/genética , Peptídeos/metabolismo , Brassicaceae/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo
7.
Int J Mol Sci ; 22(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205216

RESUMO

Two independent, complementary methods of structural analysis were used to elucidate the effect of divalent magnesium and iron cations on the structure of the protective Dps-DNA complex. Small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-EM) demonstrate that Mg2+ ions block the N-terminals of the Dps protein preventing its interaction with DNA. Non-interacting macromolecules of Dps and DNA remain in the solution in this case. The subsequent addition of the chelating agent (EDTA) leads to a complete restoration of the structure of the complex. Different effect was observed when Fe cations were added to the Dps-DNA complex; the presence of Fe2+ in solution leads to the total complex destruction and aggregation without possibility of the complex restoration with the chelating agent. Here, we discuss these different responses of the Dps-DNA complex on the presence of additional free metal cations, investigating the structure of the Dps protein with and without cations using SAXS and cryo-EM. Additionally, the single particle analysis of Dps with accumulated iron performed by cryo-EM shows localization of iron nanoparticles inside the Dps cavity next to the acidic (hydrophobic) pore, near three glutamate residues.


Assuntos
Proteínas da Membrana Bacteriana Externa/ultraestrutura , DNA/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Ferro/química , Magnésio/química , Sequência de Aminoácidos/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Cátions/química , Microscopia Crioeletrônica , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Espalhamento a Baixo Ângulo , Difração de Raios X
8.
J Biol Chem ; 294(47): 17790-17798, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31615897

RESUMO

Insulin receptor-related receptor (IRR) is a receptor tyrosine kinase of the insulin receptor family and functions as an extracellular alkali sensor that controls metabolic alkalosis in the regulation of the acid-base balance. In the present work, we sought to analyze structural features of IRR by comparing them with those of the insulin receptor, which is its closest homolog but does not respond to pH changes. Using small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), we investigated the overall conformation of the recombinant soluble IRR ectodomain (ectoIRR) at neutral and alkaline pH. In contrast to the well-known inverted U-shaped (or λ-shaped) conformation of the insulin receptor, the structural models reconstructed at different pH values revealed that the ectoIRR organization has a "droplike" shape with a shorter distance between the fibronectin domains of the disulfide-linked dimer subunits within ectoIRR. We detected no large-scale pH-dependent conformational changes of ectoIRR in both SAXS and AFM experiments, an observation that agreed well with previous biochemical and functional analyses of IRR. Our findings indicate that ectoIRR's sensing of alkaline conditions involves additional molecular mechanisms, for example engagement of receptor juxtamembrane regions or the surrounding lipid environment.


Assuntos
Álcalis/metabolismo , Multimerização Proteica , Receptor de Insulina/química , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Modelos Moleculares , Domínios Proteicos , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
9.
Pathophysiology ; 31(1): 127-146, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535620

RESUMO

Changes in lighting accompany modern urbanization trends and can lead to various pathologies based on circadian disturbances. In this study, we assessed the changes in the circadian rhythm of core body temperature (Tcore) and locomotor activity of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) following exposure to different lighting conditions: extended light phase of the day (16 h-8 h, 20 h-4 h, 24 h-0 h), light pollution, monochromatic light, and bright light therapy. The telemetry data was collected after experimental lighting conditions during periods with standard lighting (12 h of light and 12 h of darkness) and was processed using linear and cosinor analysis. The daily rhythms of rats' parameters persisted in accordance with the standard lighting regime. Tcore changes were observed in both groups compared to the initial period: in WKY, a decrease in Tcore during the darkness and an increase during the light; in SHR, the opposite trend, with Tcore increased during the darkness and decreased during the light phase of the day. A relationship between Tcore and activity was observed with weak correlation. WKY exhibited more pronounced signs of adaptive variation and desynchronization compared to SHR, which could be associated with a wider range of functional capabilities of the organism without cardiovascular pathology.

10.
J Mol Biol ; 433(10): 166930, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33713674

RESUMO

DNA co-crystallization with Dps family proteins is a fundamental mechanism, which preserves DNA in bacteria from harsh conditions. Though many aspects of this phenomenon are well characterized, the spatial organization of DNA in DNA-Dps co-crystals is not completely understood, and existing models need further clarification. To advance in this problem we have utilized atomic force microscopy (AFM) as the main structural tool, and small-angle X-scattering (SAXS) to characterize Dps as a key component of the DNA-protein complex. SAXS analysis in the presence of EDTA indicates a significantly larger radius of gyration for Dps than would be expected for the core of the dodecamer, consistent with the N-terminal regions extending out into solution and being accessible for interaction with DNA. In AFM experiments, both Dps protein molecules and DNA-Dps complexes adsorbed on mica or highly oriented pyrolytic graphite (HOPG) surfaces form densely packed hexagonal structures with a characteristic size of about 9 nm. To shed light on the peculiarities of DNA interaction with Dps molecules, we have characterized individual DNA-Dps complexes. Contour length evaluation has confirmed the non-specific character of Dps binding with DNA and revealed that DNA does not wrap Dps molecules in DNA-Dps complexes. Angle analysis has demonstrated that in DNA-Dps complexes a Dps molecule contacts with a DNA segment of ~6 nm in length. Consideration of DNA condensation upon complex formation with small Dps quasi-crystals indicates that DNA may be arranged along the rows of ordered protein molecules on a Dps sheet.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , DNA Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Plasmídeos/química , Silicatos de Alumínio/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação , Cristalização , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Microscopia de Força Atômica , Modelos Moleculares , Conformação de Ácido Nucleico , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
Biosensors (Basel) ; 11(9)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34562930

RESUMO

The determination of pH in live cells and tissues is of high importance in physiology and cell biology. In this report, we outline the process of the creation of SypHerExtra, a genetically encoded fluorescent sensor that is capable of measuring extracellular media pH in a mildly alkaline range. SypHerExtra is a protein created by fusing the previously described pH sensor SypHer3s with the neurexin transmembrane domain that targets its expression to the cytoplasmic membrane. We showed that with excitation at 445 nm, the fluorescence lifetime of both SypHer3s and SypHerExtra strongly depend on pH. Using FLIM microscopy in live eukaryotic cells, we demonstrated that SypHerExtra can be successfully used to determine extracellular pH, while SypHer3s can be applied to measure intracellular pH. Thus, these two sensors are suitable for quantitative measurements using the FLIM method, to determine intracellular and extracellular pH in a range from pH 7.5 to 9.5 in different biological systems.


Assuntos
Técnicas Biossensoriais , Fluorescência , Proteínas de Fluorescência Verde , Humanos , Concentração de Íons de Hidrogênio , Microscopia de Fluorescência
12.
Biomolecules ; 10(7)2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32708676

RESUMO

To study the structure and function of the pH-regulated receptor tyrosine kinase insulin receptor-related receptor (IRR), а member of the insulin receptor family, we obtained six mouse monoclonal antibodies against the recombinant IRR ectodomain. These antibodies were characterized in experiments with exogenously expressed full-length IRR by Western blotting, immunoprecipitation, and immunocytochemistry analyses. Utilizing a previously obtained set of IRR/IR chimeras with swapped small structural domains and point amino acid substitutions, we mapped the binding sites of the obtained antibodies in IRR. Five of them showed specific binding to different IRR domains in the extracellular region, while one failed to react with the full-length receptor. Unexpectedly, we found that 4D5 antibody can activate IRR at neutral pH, and 4C2 antibody can inhibit activation of IRR by alkali. Our study is the first description of the instruments of protein nature that can regulate activity of the orphan receptor IRR and confirms that alkali-induced activation is an intrinsic property of this receptor tyrosine kinase.


Assuntos
Receptor de Insulina/química , Receptor de Insulina/metabolismo , Álcalis/metabolismo , Animais , Anticorpos Monoclonais/química , Western Blotting , Células HEK293 , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
13.
Biomolecules ; 10(1)2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888079

RESUMO

Rapid increase of intracellular synthesis of specific histone-like Dps protein that binds DNA to protect the genome against deleterious factors leads to in cellulo crystallization-one of the most curious processes in the area of life science at the moment. However, the actual structure of the Dps-DNA co-crystals remained uncertain in the details for more than two decades. Cryo-electron tomography and small-angle X-ray scattering revealed polymorphous modifications of the co-crystals depending on the buffer parameters. Two different types of the Dps-DNA co-crystals are formed in vitro: triclinic and cubic. Three-dimensional reconstruction revealed DNA and Dps molecules in cubic co-crystals, and the unit cell parameters of cubic lattice were determined consistently by both methods.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Cristalografia por Raios X , DNA/química , Tomografia com Microscopia Eletrônica , Espalhamento a Baixo Ângulo , Sequência de Aminoácidos , Modelos Moleculares , Conformação de Ácido Nucleico , Conformação Proteica
14.
FEBS Lett ; 593(12): 1360-1371, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31090064

RESUMO

Under severe or prolonged stress, bacteria produce a nonspecific DNA-binding protein (Dps), which effectively protects DNA against damaging agents both in vitro and in vivo by forming intracellular biocrystals. The phenomenon of protective crystallization of DNA in living cells has been intensively investigated during the last two decades; however, the results of studies are somewhat contradictory, and up to now, there has been no direct determination of a Dps-DNA crystal structure. Here, we report the in vitro analysis of the vital process of Dps-DNA co-crystallization using two complementary structural methods: synchrotron small-angle X-ray scattering in solution and cryo-electron tomography. Importantly, for the first time, the DNA in the co-crystals was visualized, and the lattice parameters of the crystalline Dps-DNA complex were determined.


Assuntos
Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Conformação de Ácido Nucleico , Cristalização , DNA/química , Proteínas de Ligação a DNA/química , Técnicas In Vitro , Estrutura Molecular , Espalhamento de Radiação , Espalhamento a Baixo Ângulo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA