Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Small ; 20(34): e2401216, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38593322

RESUMO

Polarization-sensitive broadband optoelectronic detection is crucial for future sensing, imaging, and communication technologies. Narrow bandgap 2D materials, such as Te and PdSe2, show promise for these applications, yet their polarization performance is limited by inherent structural anisotropies. In this work, a self-powered, broadband photodetector utilizing a Te/PdSe2 van der Waals (vdWs) heterojunction, with orientations meticulously tailored is introduced through polarized Raman optical spectra and tensor calculations to enhance linear polarization sensitivity. The device exhibits anisotropy ratios of 1.48 at 405 nm, 3.56 at 1550 nm, and 1.62 at 4 µm, surpassing previously-reported photodetectors based on pristine Te and PdSe2. Additionally, it exhibits high responsivity (617 mA W-1 at 1550 nm), specific detectivity (5.27 × 1010 Jones), fast response (≈4.5 µs), and an extended spectral range beyond 4 µm. The findings highlight the significance of orientation-engineered heterostructures in enhancing polarization-sensitive photodetectors and advancing optoelectronic technology.

2.
Small ; 19(37): e2301386, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37086119

RESUMO

Perovskite-based photodetectors exhibit potential applications in communication, neuromorphic chips, and biomedical imaging due to their outstanding photoelectric properties and facile manufacturability. However, few of perovskite-based photodetectors focus on ultraviolet-visible-short-wavelength infrared (UV-Vis-SWIR) broadband photodetection because of the relatively large bandgap. Moreover, such broadband photodetectors with individual nanocrystal channel featuring monolithic integration with functional electronic/optical components have hardly been explored. Herein, an individual monocrystalline MAPbBr3 nanoplate-based photodetector is demonstrated that simultaneously achieves efficient UV-Vis-SWIR detection and fast-response. Nanoplate photodetectors (NPDs) are prepared by assembling single nanoplate on adjacent gold electrodes. NPDs exhibit high external quantum efficiency (EQE) and detectivity of 1200% and 5.37 × 1012 Jones, as well as fast response with rise time of 80 µs. Notably, NPDs simultaneously achieve high EQE and fast response, exceeding most perovskite devices with multi-nanocrystal channel. Benefiting from the high specific surface area of nanoplate with surface-trap-assisted absorption, NPDs achieve high performance in the near-infrared and SWIR spectral region of 850-1450 nm. Unencapsulated devices show outstanding UV-laser-irradiation endurance and decent periodicity and repeatability after 29-day-storage in atmospheric environment. Finally, imaging applications are demonstrated. This work verifies the potential of perovskite-based broadband photodetection, and stimulates the monolithic integration of various perovskite-based devices.

3.
BMC Nephrol ; 21(1): 102, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32192435

RESUMO

BACKGROUND: P. multocida (Pasteurella multocida) is animal-sourced gram-negative coccobacillus which can be transmitted to human through many animals including household pets. P. multocida induced peritoneal dialysis-related peritonitis has rarely been reported. In recent years, there has been an increase in the incidence of P. multocida induced peritoneal dialysis-related peritonitis, for the reason that patients with PD at home bred household pets. In this study, we present a case of a P. multocida induced peritoneal dialysis-related peritonitis, which is suspected to be caused through intimate contact with a household cat and we have reviewed 28 cases reported before and give suggestions for treatment and the way of prevention. CASE PRESENTATION: A 75-year-old man with end-stage renal disease (ESRD) for nearly 5 years on continuous ambulatory peritoneal dialysis (CAPD) was admitted to the nephrology department with a 1-week history of abdominal pain and a cloudy peritoneal dialysis effluent. Based on the history, physical examination and laboratory results with the findings in the peritoneal dialysis fluid, a diagnosis of peritoneal dialysis-related peritonitis was confirmed. The final culture of initial peritoneal effluent results indicated the organism was P. multocida. After a 12-day antibiotic treatment, the condition of patient was not improved. The patient was switched to ampicillin/sulbactam (3 g intravenously) twice every day and the condition was improved significantly. On further inquiring, the patient reported that he had had a cat at home and when the patient did CAPD, the cat was usually playing with the tubing or contacting the patient during CAPD. CONCLUSION: In our case and reviewed cases, P. multocida induced peritoneal dialysis-related peritonitis could be cured by proper antibiotic treatment. If individuals keep the pet away from the PD process, the infection route may be severed. P. multocida induced peritoneal dialysis-related peritonitis does not need catheter removal and exchange with hemodialysis except long-time intractable peritonitis.


Assuntos
Zoonoses Bacterianas/diagnóstico , Falência Renal Crônica/terapia , Infecções por Pasteurella/diagnóstico , Pasteurella multocida , Diálise Peritoneal Ambulatorial Contínua , Peritonite/microbiologia , Animais de Estimação , Idoso , Ampicilina/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Zoonoses Bacterianas/tratamento farmacológico , Gatos , Humanos , Masculino , Infecções por Pasteurella/tratamento farmacológico , Peritonite/diagnóstico , Sulbactam/uso terapêutico
4.
Angew Chem Int Ed Engl ; 59(4): 1659-1665, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31639242

RESUMO

The development of high-efficiency electrocatalysts for large-scale water splitting is critical but also challenging. In this study, a hierarchical CoMoSx chalcogel was synthesized on a nickel foam (NF) through an in situ metathesis reaction and demonstrated excellent activity and stability in the electrocatalytic hydrogen evolution reaction and oxygen evolution reaction in alkaline media. The high catalytic activity could be ascribed to the abundant active sites/defects in the amorphous framework and promotion of activity through cobalt doping. Furthermore, the superhydrophilicity and superaerophobicity of micro-/nanostructured CoMoSx /NF promoted mass transfer by facilitating access of electrolytes and ensuring fast release of gas bubbles. By employing CoMoSx /NF as bifunctional electrocatalysts, the overall water splitting device delivered a current density of 500 mA cm-2 at a low voltage of 1.89 V and maintained its activity without decay for 100 h.

5.
Molecules ; 23(5)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29693609

RESUMO

A novel heterotrinuclear complex [Cu2(L)Na(µ-NO3)]∙CH3OH∙CHCl3 derived from a symmetric bis(salamo)-type tetraoxime H4L having a naphthalenediol unit, was prepared and structurally characterized via means of elemental analyses, UV-Vis, FT-IR, fluorescent spectra and single-crystal X-ray diffraction. The heterobimetallic Cu(II)⁻Na(I) complex was acquired via the reaction of H4L with 2 equivalents of Cu(NO3)2·2H2O and 1 equivalent of NaOAc. Clearly, the heterotrinuclear Cu(II)⁻Na(I) complex has a 1:2:1 ligand-to-metal (Cu(II) and Na(I)) ratio. X-ray diffraction results exhibited the different geometric behaviors of the Na(I) and Cu(II) atoms in the heterotrinuclear complex; the both Cu(II) atoms are sited in the N2O2 coordination environments of fully deprotonated (L)4− unit. One Cu(II) atom (Cu1) is five-coordinated and possesses a geometry of slightly distorted square pyramid, while another Cu(II) atom (Cu2) is four-coordination possessing a square planar coordination geometry. Moreover, the Na(I) atom is in the O6 cavity and adopts seven-coordination with a geometry of slightly distorted single triangular prism. In addition, there are abundant supramolecular interactions in the Cu(II)⁻Na(I) complex. The fluorescence spectra showed the Cu(II)⁻Na(I) complex possesses a significant fluorescent quenching and exhibited a hypsochromic-shift compared with the ligand H4L.


Assuntos
Complexos de Coordenação/síntese química , Cobre/química , Sódio/química , Complexos de Coordenação/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Oximas/química , Espectrometria de Fluorescência
6.
Nanotechnology ; 27(46): 462001, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27780158

RESUMO

Apart from conventional materials, the study of two-dimensional (2D) materials has emerged as a significant field of study for a variety of applications. Graphene-like 2D materials are important elements of potential optoelectronics applications due to their exceptional electronic and optical properties. The processing of these materials towards the realization of devices has been one of the main motivations for the recent development of photonics and optoelectronics. The recent progress in photonic devices based on graphene-like 2D materials, especially topological insulators (TIs) and transition metal dichalcogenides (TMDs) with the methodology level discussions from the viewpoint of state-of-the-art designs in device geometry and materials are detailed in this review. We have started the article with an overview of the electronic properties and continued by highlighting their linear and nonlinear optical properties. The production of TIs and TMDs by different methods is detailed. The following main applications focused towards device fabrication are elaborated: (1) photodetectors, (2) photovoltaic devices, (3) light-emitting devices, (4) flexible devices and (5) laser applications. The possibility of employing these 2D materials in different fields is also suggested based on their properties in the prospective part. This review will not only greatly complement the detailed knowledge of the device physics of these materials, but also provide contemporary perception for the researchers who wish to consider these materials for various applications by following the path of graphene.

7.
Front Bioeng Biotechnol ; 12: 1353660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314349

RESUMO

Using micro/nanorobots (MNRs) for targeted therapy within the human body is an emerging research direction in biomedical science. These nanoscale to microscale miniature robots possess specificity and precision that are lacking in most traditional treatment modalities. Currently, research on electrically controlled micro/nanorobots is still in its early stages, with researchers primarily focusing on the fabrication and manipulation of these robots to meet complex clinical demands. This review aims to compare the fabrication, powering, and locomotion of various electrically controlled micro/nanorobots, and explore their advantages, disadvantages, and potential applications.

8.
Signal Transduct Target Ther ; 9(1): 26, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302461

RESUMO

Alternative splicing (AS) serves as a pivotal mechanism in transcriptional regulation, engendering transcript diversity, and modifications in protein structure and functionality. Across varying tissues, developmental stages, or under specific conditions, AS gives rise to distinct splice isoforms. This implies that these isoforms possess unique temporal and spatial roles, thereby associating AS with standard biological activities and diseases. Among these, AS-related RNA-binding proteins (RBPs) play an instrumental role in regulating alternative splicing events. Under physiological conditions, the diversity of proteins mediated by AS influences the structure, function, interaction, and localization of proteins, thereby participating in the differentiation and development of an array of tissues and organs. Under pathological conditions, alterations in AS are linked with various diseases, particularly cancer. These changes can lead to modifications in gene splicing patterns, culminating in changes or loss of protein functionality. For instance, in cancer, abnormalities in AS and RBPs may result in aberrant expression of cancer-associated genes, thereby promoting the onset and progression of tumors. AS and RBPs are also associated with numerous neurodegenerative diseases and autoimmune diseases. Consequently, the study of AS across different tissues holds significant value. This review provides a detailed account of the recent advancements in the study of alternative splicing and AS-related RNA-binding proteins in tissue development and diseases, which aids in deepening the understanding of gene expression complexity and offers new insights and methodologies for precision medicine.


Assuntos
Processamento Alternativo , Neoplasias , Humanos , Processamento Alternativo/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias/genética
9.
Orthop Surg ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235036

RESUMO

OBJECTIVES: Calcaneus defect remains challenging with limited strategies for reconstruction. Current methods, including graft transplantation, substitution, and distraction osteogenesis, showed limited advantages with certain shortcomings. Current calcaneus lengthening for partial calcaneus loss reconstruction requires bone loss of less than 35%. We introduced our combination of tarsal bone fusion and gradual lengthening method in treating massive calcaneus loss. METHODS: From January 2015 to December 2021, tarsal bone fusion and calcaneus gradual lengthening were performed in six patients with unilateral massive traumatic loss of the calcaneal tuberosity. A retrospective study was held to evaluate the outcomes of this novel technique. Clinical outcomes were assessed based on the American Orthopedic Foot and Ankle Score (AOFAS). Radiological data were assessed, which included tibio-calcaneal angle (TCA), calcaneal interface angle (CIA), metatarsal declination angle (MDA), angle of longitudinal arch (ALA), and the amount of calcaneus axial lengthening (CAL). RESULTS: The mean calcaneal axial lengthening was 43.8 ± 3.1 mm (range, 39-49.5 mm), and the mean proportion of the lengthened calcaneus was 47.8% ± 3.7% (range, 42.8-55.3%). The mean external fixation time was 104.8 ± 67.5 days (range, 69 to 242 days), and the mean external fixation index was 2.4 ± 1.6 days/cm. All patients stuck to the postoperative follow-up plan with an average follow-up time (FT) of 35.0 ± 6.7 months (range, 26-40 months). Deformities of the injured limbs were all corrected according to radiography. Based on the AOFAS, three excellent and three good results were achieved. CONCLUSION: The Ilizarov technique remains an option for calcaneus reconstruction with a great amount of loss once combined with tarsal bone fusion. The function of the injured foot and ankle can be satisfactorily restored using these techniques in our study. Apart from calcaneus elongation, tarsal bone fusion is somehow necessary to reinforce the proximal segment of the distracted calcaneus for creating a larger distraction callus, correcting concomitant foot deformities, and enhancing hindfoot stability. It is necessary to choose flexibly when tarsal bones should be fused.

10.
J Hazard Mater ; 477: 135369, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088949

RESUMO

SO2 derivatives, sulfite/bisulfite, are widely employed in both the food processing and drug synthesis industries. Despite their widespread application, excessive levels of sulfite/bisulfite can negatively impact human health. Most probes for detecting sulfite/bisulfite are restricted by their fluorescence within the visible spectrum range and poor solubility in aqueous solution, which limit their use in food testing and biological imaging. Herein, a near-infrared probe comprising of the cyanopyridine cyanine skeleton, 4-((Z)-2-((E)-2-chloro-3-(2-cyano-2-(1-methylpyridine-4(1H)-ylidene)ethylidene)cyclohex-1-en-1-yl)-1-cyanovinyl)-1-methylpyridin-1-ium (abbreviated as CCP), was developed. This probe enables precise quantification of bisulfite (HSO3-) in almost pure buffered solutions, showing a near-infrared fluorescence emission at 784 nm with an impressively low detection limit of 0.32 µM. The probe stands out for its exceptional selectivity, minimal susceptibility to interference, and strong adaptability. The probe CCP utilizes the CC bond to trigger a near-infrared fluorescence quenching reaction with HSO3- via nucleophilic addition, which effectively disrupts the large delocalization within the molecule for accurate HSO3- identification. Moreover, the probe has been successfully applied in detecting HSO3- in various food products and living cells, simplifying the measurement of HSO3- content in water samples. This advancement not only enhances the analytical capabilities but also contributes to ensuring food safety and environmental protection. ENVIRONMENTAL IMPLICATION: SO2 derivatives including sulfite/bisulfite, serving dual roles as preservatives and antioxidants, have widespread application across various sectors including food preservation, water sanitation, and the pharmaceutical industry. Despite their widespread application, excessive levels of sulfite/bisulfite can affect human health. Developing methods for precisely and sensitively detecting sulfite/bisulfite in food products and biological samples is important for ensuring food safety and environmental protection. Here, a sensitive near-infrared and multifunctional fluorescent probe in a 99.9 % buffered solution, along with water gel encapsulation, has been successfully applied for the detection of bisulfite in food, authentic water samples, and biological cells.


Assuntos
Carbocianinas , Sulfitos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectrometria de Fluorescência/métodos , Piridinas/química , Carbocianinas/química , Sulfitos/análise , Sulfitos/química , Estrutura Molecular , Humanos , Células HeLa , Processos Fotoquímicos , Limite de Detecção , Hidrogéis/química , Análise de Alimentos
11.
Bioact Mater ; 36: 427-454, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39044728

RESUMO

Tumor microenvironments (TMEs) have received increasing attention in recent years as they play pivotal roles in tumorigenesis, progression, metastases, and resistance to the traditional modalities of cancer therapy like chemotherapy. With the rapid development of nanotechnology, effective antineoplastic nanotherapeutics targeting the aberrant hallmarks of TMEs have been proposed. The appropriate design and fabrication endow nanomedicines with the abilities for active targeting, TMEs-responsiveness, and optimization of physicochemical properties of tumors, thereby overcoming transport barriers and significantly improving antineoplastic therapeutic benefits. This review begins with the origins and characteristics of TMEs and discusses the latest strategies for modulating the TMEs by focusing on the regulation of biochemical microenvironments, such as tumor acidosis, hypoxia, and dysregulated metabolism. Finally, this review summarizes the challenges in the development of smart anti-cancer nanotherapeutics for TME modulation and examines the promising strategies for combination therapies with traditional treatments for further clinical translation.

12.
Adv Sci (Weinh) ; : e2406476, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283050

RESUMO

Quantum dot sensitized solar cells (QDSCs) represent a promising third-generation photovoltaic technology, boasting a high theoretical efficiency of 44% and cost efficiency. However, their practical efficiency is constrained by reduced photovoltage (Voc) and fill factor (FF). One primary reason is the inefficient charge transfer and elevated recombination rates at the counter electrode (CE). In this work, a novel CE composed of a titanium mesh loaded with Co,N─C@MoS2 is introduced for the assembly of QDSCs. The incorporation of nanosized MoS2 enhances the density of catalytic sites, while the Co,N─C component ensures high conductivity and provides a substantial active surface area. Additionally, the titanium mesh's 3D structure serves as an effective electrical conduit, facilitating rapid electron transfer from the external circuit to the composite. These improvements in catalytic activity, charge transfer rate, and stability of the CE significantly enhance the photovoltaic performance of QDSCs. The optimized cells achieve a groundbreaking power conversion efficiency (PCE) of 16.39%, accompanied by a short-circuit current density (Jsc) of 27.26 mA cm-2, Voc of 0.818 V, and FF of 0.735. These results not only offer a new strategy for designing electrodes with high catalytic activity but also underscore the promising application of the Co,N─C@MoS2 composite in enhancing QDSC technology.

13.
Mater Horiz ; 11(11): 2572-2602, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38482962

RESUMO

The importance of terahertz (THz) detection lies in its ability to provide detailed information in a non-destructive manner, making it a valuable tool across various domains including spectroscopy, communication, and security. The ongoing development of THz detectors aims to enhance their sensitivity, resolution and integration into compact and portable devices such as handheld scanners or integrated communication chips. Generally, two-dimensional (2D) materials are considered potential candidates for device miniaturization but detecting THz radiation using 2D semiconductors is generally difficult due to the ultra-small photon energy. However, this challenge is being addressed by the advent of topological semimetals (TSM) with zero-bandgap characteristics. These semimetals offer low-energy excitations in proximity to the Dirac point, which is particularly important for applications requiring a broad detection range. Their distinctive band structures with linear energy-momentum dispersion near the Fermi level also lead to high electron mobility and low effective mass. The presence of topologically protected dissipationless conducting channels and self-powered response provides a basis for low-energy integration. In order to establish paradigms for semimetal-based THz detectors, this review initially offers an analytical summary of THz detection principles. Then, the review demonstrates the distinct design of devices, the excellent performance derived from the topological surface state and unique band structures in TSM. Finally, we outline the prospective avenues for on-chip integration of TSM-based THz detectors. We believe this review can promote further research on the new generation of THz detectors and facilitate advancements in THz imaging, spectroscopy, and communication systems.

14.
ACS Nano ; 18(26): 17065-17074, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38885193

RESUMO

Polaritons, hybrid light and matter waves, offer a platform for subwavelength on-chip light manipulation. Recent works on planar refraction and focusing of polaritons all rely on heterogeneous components with different refractive indices. A fundamental question, thus, arises whether it is possible to configure two-dimensional monolithic polariton lenses based on a single medium. Here, we design and fabricate a type of monolithic polariton lens by directly sculpting an individual hyperbolic van der Waals crystal. The in-plane polariton focusing through sculptured step-terraces is triggered by geometry-induced symmetry breaking of momentum matching in polariton refractions. We show that the monolithic polariton lenses can be robustly tuned by the rise of van der Waals terraces and their curvatures, achieving a subwavelength focusing resolution down to 10% of the free-space light wavelength. Fusing with transformation optics, monolithic polariton lenses with gradient effective refractive indices, such as Luneburg lenses and Maxwell's fisheye lenses, are expected by sculpting polaritonic structures with gradually varied depths. Our results bear potential in planar subwavelength lenses, integrated optical circuits, and photonic chips.

15.
ACS Appl Mater Interfaces ; 16(15): 19214-19224, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38581080

RESUMO

Near-infrared (NIR) polarization photodetectors with two-dimensional (2D) semiconductors and their van der Waals (vdW) heterostructures have presented great impact for the development of a wide range of technologies, such as in the optoelectronics and communication fields. Nevertheless, the lack of a photogenerated charge carrier at the device's interface leads to a poor charge carrier collection efficiency and a low linear dichroism ratio, hindering the achievement of high-performance optoelectronic devices with multifunctionalities. Herein, we present a type-II violet phosphorus (VP)/InSe vdW heterostructure that is predicted via density functional theory calculation and confirmed by Kelvin probe force microscopy. Benefiting from the type-II band alignment, the VP/InSe vdW heterostructure-based photodetector achieves excellent photodetection performance such as a responsivity (R) of 182.8 A/W, a detectivity (D*) of 7.86 × 1012 Jones, and an external quantum efficiency (EQE) of 11,939% under a 1064 nm photon excitation. Furthermore, the photodetection performance can be enhanced by manipulating the device geometry by inserting a few layers of graphene between the VP and InSe (VP/Gr/InSe). Remarkably, the VP/Gr/InSe vdW heterostructure shows a competitive polarization sensitivity of 2.59 at 1064 nm and can be integrated as an image sensor. This work demonstrates that VP/InSe and VP/Gr/InSe vdW heterostructures will be effective for promising integrated NIR optoelectronics.

16.
Front Chem ; 12: 1386076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638876

RESUMO

The advancements in the field of micro-robots for drug delivery systems have garnered considerable attention. In contrast to traditional drug delivery systems, which are dependent on blood circulation to reach their target, these engineered micro/nano robots possess the unique ability to navigate autonomously, thereby enabling the delivery of drugs to otherwise inaccessible regions. Precise drug delivery systems can improve the effectiveness and safety of synthetic lethality strategies, which are used for targeted therapy of solid tumors. MYC-overexpressing tumors show sensitivity to CDK1 inhibition. This study delves into the potential of Ro-3306 loaded magnetic-driven hydrogel micro-robots in the treatment of MYC-dependent osteosarcoma. Ro-3306, a specific inhibitor of CDK1, has been demonstrated to suppress tumor growth across various types of cancer. We have designed and fabricated this micro-robot, capable of delivering Ro-3306 precisely to tumor cells under the influence of a magnetic field, and evaluated its chemosensitizing effects, thereby augmenting the therapeutic efficacy and introducing a novel possibility for osteosarcoma treatment. The clinical translation of this method necessitates further investigation and validation. In summary, the Ro-3306-loaded magnetic-driven hydrogel micro-robots present a novel strategy for enhancing the chemosensitivity of MYC-dependent osteosarcoma, paving the way for new possibilities in future clinical applications.

17.
ACS Nano ; 18(29): 19099-19109, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39001858

RESUMO

Polarization plays a paramount role in scaling the optical network capacity. Anisotropic two-dimensional (2D) materials offer opportunities to exploit optical polarization-sensitive responses in various photonic and optoelectronic applications. However, the exploration of optical anisotropy in fiber in-line devices, critical for ultrafast pulse generation and modulation, remains limited. In this study, we present a fiber-integrated device based on a single-crystalline tellurene nanosheet. Benefiting from the chiral-chain crystal lattice and distinct optical dichroism of tellurene, multifunctional optical devices possessing diverse excellent properties can be achieved. By inserting the in-line device into a 1.5 µm fiber laser cavity, we generated both linearly polarized and dual-wavelength mode-locking pulses with a degree of polarization of 98% and exceptional long-term stability. Through a twisted configuration of two tellurene nanosheets, we realized an all-optical switching operation with a fast response. The multifunctional device also serves as a broadband photodetector. Notably, bipolar polarization encoding communication at 1550 nm can be achieved without any external voltage. The device's multifunctionality and stability in ambient environments established a promising prototype for integrating polarization as an additional physical dimension in fiber optical networks, encompassing diverse applications in light generation, modulation, and detection.

18.
Adv Mater ; 36(38): e2405233, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39091054

RESUMO

Light-induced ferroelectric polarization in 2D layered ferroelectric materials holds promise in photodetectors with multilevel current and reconfigurable capabilities. However, translating this potential into practical applications for high-density optoelectronic information storage remains challenging. In this work, an α-In2Se3/Te heterojunction design that demonstrates spatially resolved, multilevel, nonvolatile photoresponsivity is presented. Using photocurrent mapping, the spatially localized light-induced poling state (LIPS) is visualized in the junction region. This localized ferroelectric polarization induced by illumination enables the heterojunction to exhibit enhanced photoresponsivity. Unlike previous reports that observe multilevel polarization enhancement in electrical resistance, the device shows nonvolatile photoresponsivity enhancement under illumination. After polarization saturation, the photocurrent increases up to 1000 times, from 10-12 to 10-9 A under the irradiation of a 520 nm laser with a power of 1.69 nW, compared to the initial state in a self-driven mode. The photodetector exhibits high detectivity of 4.6×1010 Jones, with a rise time of 27 µs and a fall time of 28 µs. Furthermore, the device's localized poling characteristics and multilevel photoresponse enable spatially multiplexed optical information storage. These results advance the understanding of LIPS in 2D ferroelectric materials, paving the way for optoelectronic information storage technologies.

19.
Cell Oncol (Dordr) ; 47(5): 1845-1861, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39115605

RESUMO

PURPOSE: Osteosarcoma, a highly malignant primary bone tumor primarily affecting adolescents, frequently develops resistance to initial chemotherapy, leading to metastasis and limited treatment options. Our study aims to uncover novel therapeutic targets for metastatic and recurrent osteosarcoma. METHODS: In this study, we proved the potential of modulating the YAP1-regulated glutamine metabolic pathway to augment the response of OS to DFMO. We initially employed single-cell transcriptomic data to gauge the activation level of polyamine metabolism in MTAP-deleted OS patients. This was further substantiated by transcriptome sequencing data from recurrent and non-recurrent patient tissues, confirming the activation of polyamine metabolism in progressive OS. Through high-throughput drug screening, we pinpointed CIL56, a YAP1 inhibitor, as a promising candidate for a combined therapeutic strategy with DFMO. In vivo, we utilized PDX and CDX models to validate the therapeutic efficacy of this drug combination. In vitro, we conducted western blot analysis, qPCR analysis, immunofluorescence staining, and PuMA experiments to monitor alterations in molecular expression, distribution, and tumor metastasis capability. We employed CCK-8 and colony formation assays to assess the proliferative capacity of cells in the experimental group. We used flow cytometry and reactive oxygen probes to observe changes in ROS and glutamine metabolism within the cells. Finally, we applied RNA-seq in tandem with metabolomics to identify metabolic alterations in OS cells treated with a DFMO and CIL56 combination. This enabled us to intervene and validate the role of the YAP1-mediated glutamine metabolic pathway in DFMO resistance. RESULTS: Through single-cell RNA-seq data analysis, we pinpointed a subset of late-stage OS cells with significantly upregulated polyamine metabolism. This upregulation was further substantiated by transcriptomic profiling of recurrent and non-recurrent OS tissues. High-throughput drug screening revealed a promising combination strategy involving DFMO and CIL56. DFMO treatment curbs the phosphorylation of YAP1 protein in OS cells, promoting nuclear entry and initiating the YAP1-mediated glutamine metabolic pathway. This reduces intracellular ROS levels, countering DFMO's anticancer effect. The therapeutic efficacy of DFMO can be amplified both in vivo and in vitro by combining it with the YAP1 inhibitor CIL56 or the glutaminase inhibitor CB-839. This underscores the significant potential of targeting the YAP1-mediated glutamine metabolic pathway to enhance efficacy of DFMO. CONCLUSION: Our findings elucidate YAP1-mediated glutamine metabolism as a crucial bypass mechanism against DFMO, following the inhibition of polyamine metabolism. Our study provides valuable insights into the potential role of DFMO in an "One-two Punch" therapy of metastatic and recurrent osteosarcoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Ósseas , Glutamina , Osteossarcoma , Fatores de Transcrição , Proteínas de Sinalização YAP , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Osteossarcoma/tratamento farmacológico , Glutamina/metabolismo , Humanos , Proteínas de Sinalização YAP/metabolismo , Linhagem Celular Tumoral , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/tratamento farmacológico , Camundongos , Mutações Sintéticas Letais , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos
20.
Nanomaterials (Basel) ; 14(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38334558

RESUMO

Emerging applications of optical technologies are driving the development of miniaturised light sources, which in turn require the fabrication of matching micro-optical elements with sub-1 mm cross-sections and high optical quality. This is particularly challenging for spatially constrained biomedical applications where reduced dimensionality is required, such as endoscopy, optogenetics, or optical implants. Planarisation of a lens by the Fresnel lens approach was adapted for a conical lens (axicon) and was made by direct femtosecond 780 nm/100 fs laser writing in the SZ2080™ polymer with a photo-initiator. Optical characterisation of the positive and negative fraxicons is presented. Numerical modelling of fraxicon optical performance under illumination by incoherent and spatially extended light sources is compared with the ideal case of plane-wave illumination. Considering the potential for rapid replication in soft polymers and resists, this approach holds great promise for the most demanding technological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA