Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 23(6)2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895742

RESUMO

Clinical applications of many small molecules are limited due to poor solubility and lack of controlled release besides lack of other desirable properties. Experimental and computational studies have reported on the therapeutic potential of polyamidoamine (PAMAM) dendrimers as solubility enhancers in pre-clinical and clinical settings. Besides formulation strategies, factors such as pH, PAMAM dendrimer generation, PAMAM dendrimer concentration, nature of the PAMAM core, special ligand and surface modifications of PAMAM dendrimer have an influence on drug solubility and other recommendable pharmacological properties. This review, therefore, compiles the recently reported applications of PAMAM dendrimers in pre-clinical and clinical uses as enhancers of solubility and other desirable properties such as sustained and controlled release, bioavailability, bio-distribution, toxicity reduction or enhancement, and targeted delivery of small molecules with emphasis on cancer treatment.


Assuntos
Biologia Computacional/métodos , Poliaminas/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Dendrímeros/química , Portadores de Fármacos/química , Humanos , Concentração de Íons de Hidrogênio , Poliaminas/química , Bibliotecas de Moléculas Pequenas/química , Solubilidade
2.
Inorg Chem ; 56(15): 9247-9254, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28722401

RESUMO

We present a simple, easily scalable route to monodisperse copper sulfide nanocrystals by the hot injection of a series of novel copper(I) xanthate single-source precursors [(PPh3)2Cu(S2COR)] (R = isobutyl, 2-methoxyethyl, 2-ethoxyethyl, 1-methoxy-2-propyl, 3-methoxy-1-butyl, and 3-methoxy-3-methyl-1-butyl), whose crystal structures are also reported. We show that the width of the obtained rods is dependent on the length of the xanthate chain, which we rationalize through a computational study, where we show that there is a relationship between the ground-state energy of the precursor and the copper sulfide rod width.

3.
Int J Mol Sci ; 17(10)2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27689997

RESUMO

Chitosan (CS, molecular weight 20.2 kDa, degree of deacylation (DD) 73.31%) was successfully obtained by deacetylation of chitin extracted from shrimp (Litopenaeus vannamei) shell wastes. The encapsulation of the bioactive natural product, panchovillin (PANV), isolated from Erythrina schliebenii, on a chitosan-tripolyphosphate (CS/TPP) nano-framework was achieved by ionotropic gelation. Characterization of pure CS, CS/TPP and PANV-CS/TPP nanocomposites was performed by FTIR, SEM and XRD. The molecular weight of chitosan and the thermal stability of the materials were determined by MALDI-TOF-MS and simultaneous thermal analyzer (STA)/DTG, respectively. The respective encapsulation efficiency and loading capacity of the PANV were found to be 70% and 0.36%. The in vitro release studies showed an initial burst of 42% of PANV in the first six hours. This was followed by a slow and sustained release up to 72 h. The in vivo antimycobacterial activities of both PANV and PANV-CS/TPP nanocomposite against Mycobacterium indicus pranii (MIP) using Galleria mellonella larvae as an in vivo infection model are reported in this paper.

4.
Int J Mol Sci ; 16(4): 8569-90, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25894225

RESUMO

Cashew nut shells (CNS), which are agro wastes from cashew nut processing factories, have proven to be among the most versatile bio-based renewable materials in the search for functional materials and chemicals from renewable resources. CNS are produced in the cashew nut processing process as waste, but they contain cashew nut shell liquid (CNSL) up to about 30-35 wt. % of the nut shell weight depending on the method of extraction. CNSL is a mixture of anacardic acid, cardanol, cardol, and methyl cardol, and the structures of these phenols offer opportunities for the development of diverse products. For anacardic acid, the combination of phenolic, carboxylic, and a 15-carbon alkyl side chain functional group makes it attractive in biological applications or as a synthon for the synthesis of a multitude of bioactive compounds. Anacardic acid, which is about 65% of a CNSL mixture, can be extracted from the agro waste. This shows that CNS waste can be used to extract useful chemicals and thus provide alternative green sources of chemicals, apart from relying only on the otherwise declining petroleum based sources. This paper reviews the potential of anacardic acids and their semi-synthetic derivatives for antibacterial, antitumor, and antioxidant activities. The review focuses on natural anacardic acids from CNS and other plants and their semi-synthetic derivatives as possible lead compounds in medicine. In addition, the use of anacardic acid as a starting material for the synthesis of various biologically active compounds and complexes is reported.


Assuntos
Ácidos Anacárdicos/farmacologia , Extratos Vegetais/farmacologia , Ácidos Anacárdicos/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Nozes/química , Extratos Vegetais/química
5.
Int J Mol Sci ; 16(11): 26363-77, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26556337

RESUMO

The biomedical potential of flavonoids is normally restricted by their low water solubility. However, little has been reported on their encapsulation into polyamidoamine (PAMAM) dendrimers to improve their biomedical applications. Generation four (G4) PAMAM dendrimer containing ethylenediaminetetraacetic acid core with acrylic acid and ethylenediamine as repeating units was synthesized by divergent approach and used to encapsulate a flavonoid tetramethylscutellarein (TMScu, 1) to study its solubility and in vitro release for potential bioactivity enhancement. The as-synthesized dendrimer and the dendrimer-TMScu complex were characterized by spectroscopic and spectrometric techniques. The encapsulation of 1 into dendrimer was achieved by a co-precipitation method with the encapsulation efficiency of 77.8% ± 0.69% and a loading capacity of 6.2% ± 0.06%. A phase solubility diagram indicated an increased water solubility of 1 as a function of dendrimer concentration at pH 4.0 and 7.2. In vitro release of 1 from its dendrimer complex indicated high percentage release at pH 4.0. The stability study of the TMScu-dendrimer at 0, 27 and 40 °C showed the formulations to be stable when stored in cool and dark conditions compared to those stored in light and warmer temperatures. Overall, PAMAM dendrimer-G4 is capable of encapsulating 1, increasing its solubility and thus could enhance its bioactivity.


Assuntos
Dendrímeros , Composição de Medicamentos , Etilenodiaminas/química , Etilenodiaminas/farmacologia , Poliaminas/química , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Poliaminas/síntese química , Espectroscopia de Prótons por Ressonância Magnética , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
Dalton Trans ; 45(6): 2647-55, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26732865

RESUMO

Tris-(piperidinedithiocarbamato)iron(III) (1) and tris-(tetrahydroquinolinedithiocarbamato)iron(iii) (2) complexes have been synthesized and their single-crystal X-ray structures were determined. Thermogravimetric analysis (TGA) of the complexes showed decomposition to iron sulfide. Both complexes were then used as single-source precursors for the deposition of iron sulfide thin films by aerosol-assisted chemical vapour deposition (AACVD). Energy-dispersive X-ray (EDX) spectroscopy confirmed the formation of iron sulfide films. The addition of tert-butyl thiol almost doubled the sulfur content in the deposited films. Scanning electron microscopy (SEM) images of the iron sulfide films from both complexes showed flakes/leaves/sheets, spherical granules and nanofibres. The sizes and shapes of these crystallites depended on the nature of the precursor, temperature, solvent and the amount of tert-butyl thiol used. The observed optical properties are dependent upon the variation of reaction parameters such as temperature and solvent. Powder X-ray diffraction (p-XRD) studies revealed that pyrrhotite, hexagonal (Fe0.975S), marcasite and smythite (Fe3S4) phases were differently deposited.

7.
Dalton Trans ; 42(40): 14438-44, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-23969700

RESUMO

Hydrogenation of crude anacardic acid gave a transparent crystalline product on recrystallization. When reacted with copper nitrate in the presence of pyridine it produced green crystals of a pyridine adduct of a dimeric copper(II) anacardate with the copper acetate structure. The X-ray single crystal structures of both anacardic acid and the copper complex were determined. Magnetic studies have confirmed strong antiferromagnetic coupling between copper(II) centre in the dimer. The exchange coupling constant was determined to be J = -324 cm(-1). The EPR spectra of the polycrystalline product are consistent with spin S = 1. The zero-field splitting parameter and g tensor values are |D| = 0.36 cm(-1), g(||) = 2.36 and g(⊥) = 2.06.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Salicilatos/química , Salicilatos/síntese química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA