Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793983

RESUMO

Over the past few decades, Information and Communication Technologies (ICT) have revolutionized the fields of nursing and patient healthcare management. This scoping review and the accompanying case studies shed light on the extensive scope and impact of ICT in these critical healthcare domains. The scoping review explores the wide array of ICT tools employed in nursing care and patient healthcare management. These tools encompass electronic health records systems, mobile applications, telemedicine solutions, remote monitoring systems, and more. This article underscores how these technologies have enhanced the efficiency, accuracy, and accessibility of clinical information, contributing to improved patient care. ICT revolution has revitalized nursing care and patient management, improving the quality of care and patient satisfaction. This review and the accompanying case studies emphasize the ongoing potential of ICT in the healthcare sector and call for further research to maximize its benefits.


Assuntos
Registros Eletrônicos de Saúde , Telemedicina , Humanos , Atenção à Saúde , Aplicativos Móveis , Cuidados de Enfermagem , Satisfação do Paciente
2.
Sensors (Basel) ; 23(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37571692

RESUMO

The applied behavior analysis (ABA) model emphasizes observable and measurable behaviors by carrying out decision making using experimental data (behavioral observation assessment strategies). In this framework, information and communication technology (ICT) becomes highly suitable for enhancing the efficiency and effectiveness of the methodology. This paper aims to delve into the potential of ICT in providing innovative solutions to support ABA applications. It focuses on how ICT can contribute to fostering social inclusion with respect to children with neurodevelopmental disorders. ICT offers advanced solutions for continuous and context-aware monitoring, as well as automatic real-time behavior assessments. Wireless sensor systems (wearable perceptual, biomedical, motion, location, and environmental sensors) facilitate real-time behavioral monitoring in various contexts, enabling the collection of behavior-related data that may not be readily evident in traditional observational studies. Moreover, the incorporation of artificial intelligence algorithms that are appropriately trained can further assist therapists throughout the different phases of ABA therapy. These algorithms can provide intervention guidelines and deliver an automatic behavioral analysis that is personalized to the child's unique profile. By leveraging the power of ICT, ABA practitioners can benefit from cutting-edge technological advancements to optimize their therapeutic interventions and outcomes for children with neurodevelopmental disorders, ultimately contributing to their social inclusion and overall wellbeing.


Assuntos
Análise do Comportamento Aplicada , Transtornos do Neurodesenvolvimento , Humanos , Criança , Inclusão Social , Inteligência Artificial , Comunicação , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/terapia
3.
Sensors (Basel) ; 23(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36991660

RESUMO

Visible light communications (VLC) is a technology that enables the transmission of digital information with a light source. VLC is nowadays seen as a promising technology for indoor applications, helping WiFi to handle the spectrum crunch. Possible indoor applications range from Internet connection at home/office to multimedia content delivery in a museum. Despite the vast interest of researchers in both theoretical analysis and experimentation on VLC technology, no studies have been carried out on the human perceptions of objects illuminated by VLC-based lamps. It is important to define if a VLC lamp decreases the reading capability or modifies the color perception in order to make VLC a technology appropriate for everyday life use. This paper describes the results of psychophysical tests on humans to define if VLC lamps modify the perception of colors or the reading speed. The results of the reading speed test showed a 0.97 correlation coefficient between tests with and without VLC modulated light, leading us to conclude that there is no difference in the reading speed capability with and without VLC-modulated light. The results of the color perception test showed a Fisher exact test p-value of 0.2351, showing that the perception of color is not influenced by the presence of the VLC modulated light.

4.
Sensors (Basel) ; 22(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36433215

RESUMO

In this paper, we present very recent results regarding the latency characterization of a novel bidirectional visible light communication (VLC) system for vehicular applications, which could be relevant in intelligent transportation system (ITS) safety applications, such as the assisted and automated braking of cars and motorbikes in critical situations. The VLC system has been implemented using real motorbike head- and tail-lights with distances up to 27 m in a realistic outdoor scenario. We performed a detailed statistical analysis of the observed error distribution in the communication process, assessing the most probable statistical values of expected latency depending on the observed packet error rate (PER). A minimum attainable observed round-trip latency of 2.5 ms was measured. Using our dataset, we have also estimated the probability to receive correctly a message with a specific average latency for a target PER, and we compare it to the ultra-reliable low-latency (URLL) 5G communications service. In addition, a mobility model is implemented to compare the VLC and radio frequency (RF) technologies (IEEE802.11p, LTE, 5G) to support an automated braking systems for vehicles in urban platooning.

5.
Sensors (Basel) ; 23(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36616785

RESUMO

In the current Information Age, it is usual to access our personal and professional information, such as bank account data or private documents, in a telematic manner. To ensure the privacy of this information, user authentication systems should be accurately developed. In this work, we focus on biometric authentication, as it depends on the user's inherent characteristics and, therefore, offers personalized authentication systems. Specifically, we propose an electrocardiogram (EEG)-based user authentication system by employing One-Class and Multi-Class Machine Learning classifiers. In this sense, the main novelty of this article is the introduction of Isolation Forest and Local Outlier Factor classifiers as new tools for user authentication and the investigation of their suitability with EEG data. Additionally, we identify the EEG channels and brainwaves with greater contribution to the authentication and compare them with the traditional dimensionality reduction techniques, Principal Component Analysis, and χ2 statistical test. In our final proposal, we elaborate on a hybrid system resistant to random forgery attacks using an Isolation Forest and a Random Forest classifiers, obtaining a final accuracy of 82.3%, a precision of 91.1% and a recall of 75.3%.


Assuntos
Identificação Biométrica , Ondas Encefálicas , Identificação Biométrica/métodos , Aprendizado de Máquina , Privacidade , Eletrocardiografia , Segurança Computacional
6.
Sensors (Basel) ; 21(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450844

RESUMO

The last decades have been characterized by an exponential increase in digital services. The demand is foreseen to further increase in the next years, and mobile networks will have to mandatorily supply connections to enable digital services with very different requirements, from ultra high speed to ultra low latency. The deployment and the coexistence of cells of different size, from femto to macro, will be one of the key elements for providing such pervasive wireless connection: the ultra dense networks (UDN) paradigm. How to associate users and base stations is one of the most investigated research topics. Many criteria can be drawn, from minimization of power consumption to optimization of throughput. In this paper we propose a new utility to optimize two of the most important features of future mobile connection: security and energy consumption. By using our utility it is possible to jointly select the base station to be activated in a UDN, and associate users to the base stations with the aim of maximizing the secure throughput by spending the minimum energy. Moreover, we propose a heuristic that allows to achieve performance very close to the optimal one with reduced complexity. Effectiveness of the proposed approach is proved by means of comparison with benchmark approaches.

7.
Sensors (Basel) ; 21(9)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063222

RESUMO

In this paper, we propose an unobtrusive method and architecture for monitoring a person's presence and collecting his/her health-related parameters simultaneously in a home environment. The system is based on using a single ultra-wideband (UWB) impulse-radar as a sensing device. Using UWB radars, we aim to recognize a person and some preselected movements without camera-type monitoring. Via the experimental work, we have also demonstrated that, by using a UWB signal, it is possible to detect small chest movements remotely to recognize coughing, for example. In addition, based on statistical data analysis, a person's posture in a room can be recognized in a steady situation. In addition, we implemented a machine learning technique (k-nearest neighbour) to automatically classify a static posture using UWB radar data. Skewness, kurtosis and received power are used in posture classification during the postprocessing. The classification accuracy achieved is more than 99%. In this paper, we also present reliability and fault tolerance analyses for three kinds of UWB radar network architectures to point out the weakest item in the installation. This information is highly important in the system's implementation.


Assuntos
Radar , Processamento de Sinais Assistido por Computador , Idoso , Feminino , Humanos , Masculino , Monitorização Fisiológica , Postura , Reprodutibilidade dos Testes , Respiração
8.
Sensors (Basel) ; 21(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557140

RESUMO

Residual motion of upper limbs in individuals who experienced cervical spinal cord injury (CSCI) is vital to achieve functional independence. Several interventions were developed to restore shoulder range of motion (ROM) in CSCI patients. However, shoulder ROM assessment in clinical practice is commonly limited to use of a simple goniometer. Conventional goniometric measurements are operator-dependent and require significant time and effort. Therefore, innovative technology for supporting medical personnel in objectively and reliably measuring the efficacy of treatments for shoulder ROM in CSCI patients would be extremely desirable. This study evaluated the validity of a customized wireless wearable sensors (Inertial Measurement Units-IMUs) system for shoulder ROM assessment in CSCI patients in clinical setting. Eight CSCI patients and eight healthy controls performed four shoulder movements (forward flexion, abduction, and internal and external rotation) with dominant arm. Every movement was evaluated with a goniometer by different testers and with the IMU system at the same time. Validity was evaluated by comparing IMUs and goniometer measurements using Intraclass Correlation Coefficient (ICC) and Limits of Agreement (LOA). inter-tester reliability of IMUs and goniometer measurements was also investigated. Preliminary results provide essential information on the accuracy of the proposed wireless wearable sensors system in acquiring objective measurements of the shoulder movements in CSCI patients.


Assuntos
Medula Cervical , Ombro , Humanos , Projetos Piloto , Amplitude de Movimento Articular , Reprodutibilidade dos Testes
9.
Sensors (Basel) ; 20(14)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709090

RESUMO

Reducing energy consumption is one of the most important task of the approaching Internet of Things (IoT) paradigm. Existing communication standards, such as 3G/4G, use complex protocols (active mode, sleep modes) in order to address the waste of energy. These protocols are forced to transmit when one frame is only partially filled with information symbols. The hard task to adapt the power-saving mode with low latency to the discontinuity of the source is mainly due to the fact that the receiver cannot know a priori when the source has something to transmit. In this paper, we propose a modified signalling/constellation which can save energy by mapping a zero-energy symbol in the information source. This paper addresses the fundamentals of this new technique: the maximum a posteriori probability (MAP) criterion, the probability of error, the (energy) entropy, the (energy) capacity as well as the energy cost of the proposed technique are derived for the binary signalling case.

10.
Sensors (Basel) ; 18(9)2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189591

RESUMO

An innovative wireless sensor network (WSN) based on Ultra-Wide Band (UWB) technology for 3D accurate superficial monitoring of ground deformations, as landslides and subsidence, is proposed. The system has been designed and developed as part of an European Life+ project, called Wi-GIM (Wireless Sensor Network for Ground Instability Monitoring). The details of the architecture, the localization via wireless technology and data processing protocols are described. The flexibility and accuracy achieved by the UWB two-way ranging technique is analysed and compared with the traditional systems, such as robotic total stations (RTSs) and Ground-based Interferometric Synthetic Aperture Radar (GB-InSAR), highlighting the pros and cons of the UWB solution to detect the surface movements. An extensive field trial campaign allows the validation of the system and the analysis of its sensitivity to different factors (e.g., sensor nodes inter-visibility, effects of the temperature, etc.). The Wi-GIM system represents a promising solution for landslide monitoring and it can be adopted in combination with traditional systems or as an alternative in areas where the available resources are inadequate. The versatility, easy/fast deployment and cost-effectiveness, together with good accuracy, make the Wi-GIM system a possible solution for municipalities that cannot afford expensive/complex systems to monitor potential landslides in their territory.

11.
J Signal Process Syst ; 95(4): 435-457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36748044

RESUMO

6G networks have the burden to provide not only higher performance compared to 5G, but also to enable new service domains as well as to open the door over a new paradigm of mobile communication. This paper presents an overview on the role and key challenges of signal processing (SP) in future 6G systems and networks from the conditioning of the signal at transmission to MIMO precoding and detection, from channel coding to channel estimation, from multicarrier and non-orthogonal multiple access (NOMA) to optical wireless communications and physical layer security (PLS). We describe also the core future research challenges on technologies including machine learning based 6G design, integrated communications and sensing (ISAC), and the internet of bio-nano-things.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34299910

RESUMO

In the last years a large variety of eHealth services and Apps for professional medical users have been developed for different scenarios. The increasing elderly population (+100% in 2050) makes urgent to implement tele-medicine paradigm in the healthcare structures. The need of monitoring large number of patients distributed over the territory, together with the lack of medical resources, makes the adoption of Information Communication Technologies (ICT) crucial for the future healthcare services. This paper presents an ICT architecture model for the provision of tele-monitoring services within a novel proposed remote monitoring concept for healthcare, considering the new Family and Community Nurse (FCN). An integrated and personalized tele-monitoring solution is presented, through a detailed description of the reference network architecture and service platform. Moreover, the preliminary results of the experimental activities carried out for the evaluation of the system in terms of usability in operational scenarios are provided.


Assuntos
Telemedicina , Idoso , Doença Crônica , Comunicação , Humanos , Monitorização Fisiológica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA