Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biomed Chromatogr ; 38(1): e5755, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37903616

RESUMO

This study performed the simultaneous quantification of assay and two alkyl sulfonate (tosylate) analogs of empagliflozin (EGZ), specifically methyl 4-methyl benzene sulfonate (MMBS) and ethyl 4-methyl benzene sulfonate (EMBS) in EGZ, and its finished dosage form using an accurate and sensitive ultra-performance liquid chromatography-mass spectrometry method. The separation was achieved on a Waters Acquity BEH Shield RP18 (100 × 2.1 mm, 1.7 µm) column in gradient elution mode with 0.1% formic acid and acetonitrile as the mobile phases and a flow rate of 0.5 mL/min. For simultaneous quantification, the multiple reaction monitoring technique was utilized. The procedure was successfully validated in accordance with the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines. The peak areas of both impurities, along with their concentrations, exhibited a good relationship with Pearson's correlation coefficient (R), which was >0.999 in the range of 0.3-6 ppm with an EGZ concentration of 2 mg/mL. The percentage recoveries from the limit of quantitation (LOQ) to 200% to the specification level were in the range of 94.82%-102.92%, whereas the percentage relative standard deviation (%RSD) was <2. Therefore, this method is rapid and accurate to quantify MMBS, EMBS, and EGZ assay simultaneously from the marketed tablet dosage forms of EGZ for commercial release and stability sample testing.


Assuntos
Benzeno , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Comprimidos
2.
J Sep Sci ; 46(11): e2200770, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36976154

RESUMO

The design of an appropriate analytical method for assessing the quality of pharmaceuticals requires a deep understanding of science, and risk evaluation approaches are appreciated. The current study discusses how a related substance method was developed for Nintedanib esylate. The best possible separation between the critical peak pairs was achieved using an X-Select charged surface hybrid Phenyl Hexyl (150 × 4.6) mm, 3.5 µm column. A mixture of water, acetonitrile, and methanol in mobile phase-A (70:20:10) and mobile phase-B (20:70:10), with 0.1% trifluoroacetic acid and 0.05% formic acid in both eluents. The set flow rate, wavelength, and injection volumes were 1.0 ml/min, 285 nm, and 5 µl, respectively, with gradient elution. The method conditions were validated as per regulatory requirements and United States Pharmacopeia general chapter < 1225 >. The correlation coefficient for all impurities from the linearity experiment was found to be > 0.999. The % relative standard deviation from the precision experiments ranged from 0.4 to 3.6. The mean %recovery from the accuracy study ranged from 92.5 to 106.5. Demonstrated the power of the stability-indicating method through degradation studies; the active drug component is more vulnerable to oxidation than other conditions. Final method conditions were further evaluated using a full-factorial design. The robust method conditions were identified using the graphical optimization from the design space.


Assuntos
Contaminação de Medicamentos , Indóis , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Reprodutibilidade dos Testes
3.
Biomed Chromatogr ; 37(4): e5580, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36609857

RESUMO

A nonsteroidal drug called flurbiprofen (FBN) has analgesic, anti-inflammatory and antipyretic activity. Currently the determination of FBN in cataplasm does not have any pharmacopeial method. However, the drug substance, tablet and ophthalmic solution formulations do have pharmacopeial methods. The development and validation of an accurate, precise and stability-indicating analytical method for the determination of FBN in cataplasm formulations is reported. The gradient method was employed for the quantification of FBN in the presence of internal standards such as biphenyl. A nonpolar separation phase (C18 , 250 × 4.6 mm, 5 µm Inertsil column; GL Sciences) was used. The optimal flow rate, column oven temperature, injection volume and detector wavelengths were 1.0 ml/min, 40°C, 20 µl and 245 nm, respectively. Mobile phase A was a mixture of water and glacial acetic acid (30:1 v/v) pH adjusted to 2.20 with glacial acetic acid or 1 m NaOH; mobile phase B was methanol (100%). The gradient elution program was [time (min)/% B]: 5/60, 20/70, 25/70, 30/60 and 40/60. The obtained RSDs for the precision and intermediate precision were 0.7 and 0.5%. The percentage recovery ranged from 99.2 to 100.4%. The linear regression coefficient >0.9996 indicates that all peak responses were linear with the concentration. The sample and standard solutions were stable for up to 24 h on the benchtop and in the refrigerator. The critical peaks were well separated from the generated peaks owing to forced degradation, including diluent and placebo peaks. The method validation data and quality by design-based robustness study results indicate that the developed method is robust and fit for routine use in the quality control laboratory. The proposed method is specific, accurate and precise, and the quality by design utilized the first method for the determination of FBN in cataplasm formulations. Transdermal patches and gels have low extraction capacity and this method is applicable for quantification.


Assuntos
Flurbiprofeno , Cromatografia Líquida de Alta Pressão/métodos , Ácido Acético , Estabilidade de Medicamentos , Cromatografia Líquida
4.
Biomed Chromatogr ; 37(4): e5585, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36692333

RESUMO

Analytical techniques must be sensitive, specific, and accurate to assess the active pharmaceutical ingredients in pharmaceutical dosage forms. The quality-by-design (QbD) application has proven to be a practical method for magnifying HPLC operations. This article discusses the successfully developed QbD-based stability-indicative LC method for evaluating acetaminophen, caffeine, and aspirin (ASP) in tablet dosage form. To achieve the necessary chromatographic separation, Milli-Q water, methanol, and glacial acetic acid were employed in the following ratios: 63:35:2 (v/v/v) for mobile phase A and 18:80:2 (v/v/v) for mobile phase B. The flow rate, column temperature, and detecting wavelength were 1.0 ml/min, 40°C, and 275 nm, respectively, and an InertSustain C18 analytical column (150 × 4.6 mm, 3 µm) was used. Linearity was between 10.0 and 150.0 µg/ml for ASP and acetaminophen and between 2.6 and 39.0 µg/ml for caffeine. The accuracy findings were more than 97%, and the correlation coefficient for all three components was found to be greater than 0.999. The validated HPLC method yielded reliable and accurate results. ASP was shown to be vulnerable to both acid and alkaline hydrolysis in the forced degradation study. The described method is capable of separating the degradants produced during stress testing and is regarded as stability indicating. The proposed method can be used for a wider range of other formulations with an appropriate diluent selection and sample preparation procedure optimization.


Assuntos
Acetaminofen , Cafeína , Acetaminofen/análise , Cafeína/análise , Comprimidos/química , Cromatografia Líquida de Alta Pressão/métodos , Aspirina/análise
5.
J Sep Sci ; 45(10): 1711-1726, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35279949

RESUMO

Serotonin receptor antagonist drug Ondansetron hydrochloride injectable formulation containing all related substances was identified and quantified by a single, simple, sensitive, eco-friendly, and green high-performance liquid chromatography method. The disseverment of all impurities was achieved with the Discovery Cyano (250 × 4.6) mm, 5 µm column. The gradient program was composed of pH 5.7 phosphate buffer as mobile phase A and acetonitrile as mobile phase B. The flow rate, column compartment temperature, and detection wavelengths were 0.9 mL/min, 30°C, and 216 nm, respectively. The method was validated as per current regulatory guidelines. The obtained %relative standard deviation for the precision results was between 0.55 and 2.72% for all impurities. The correlation coefficient values from the linearity experiment for impurities and analyte were more than 0.995. The accuracy results were obtained between 88.4 and 113.0% for all impurities. Both sample and standard solutions showed 24 h stability at benchtop and refrigerator conditions. All impurities and analytes met the specificity and mass balance for all forced degradation conditions. Quality-by-design-based design of experiments was utilized to establish the method's robustness. Method greenness was assessed by using the current advanced tool green analytical procedure index, National Environmental Methods Index, and analytical eco-scale.


Assuntos
Ondansetron , Antagonistas da Serotonina , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Medicamentos , Estabilidade de Medicamentos , Reprodutibilidade dos Testes
6.
Biomed Chromatogr ; 36(6): e5359, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35203103

RESUMO

Mast cell stabilizer and histamine receptor antagonist olopatadine hydrochloride (OPT) assay method predicated on LC have been established for the analysis in multiple formulations. The current method dealt with ophthalmic solution, nasal spray, and tablet formulation products. The isocratic chromatography method was optimized and validated with a Boston green C8 column (150 × 4.6 mm, 5 µm i.d.). Sodium dihydrogen phosphate buffer (pH 3.5) with acetonitrile in the ratio of 75:25 (v/v) was used as a mobile phase at a flow rate of 1.0 mL min-1 and at the column temperature of 30°C, and the detection was done at 299 nm. The method was validated as per International Council for Harmonisation (ICH) guidelines and United States Pharmacopoeia (USP). The accuracy results ranged from 99.9 to 100.7%, % relative standard deviation (RSD) from the precision was 0.5, and correlation coefficient from the linearity experiment was > 0.999. Solution stability was established for 24 h at room temperature and refrigerator conditions, and it was found that the solutions were stable. Using quality by design-based experiment designs, critical quality attributes were studied and it was found that the method was robust. In all the forced degradation studies peak purity was passed, and no interference was found at the retention time of the active component. The method validation data demonstrated that the developed method is linear, precise, accurate, specific, robust, and stable for the determination of OPT from multiple formulations. Analytical eco-scale tool, Green Analytical Procedure Index (GAPI) tool, and the National Environmental Method Index (NEMI) were used to evaluate the greenness of the method, and the analytical eco-score of 77 for the presented method was found to be excellent.


Assuntos
Antagonistas dos Receptores Histamínicos , Estabilizadores de Mastócitos , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Cloridrato de Olopatadina , Receptores Histamínicos , Reprodutibilidade dos Testes
7.
ACS Omega ; 9(8): 8773-8788, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434810

RESUMO

Globally, the pharmaceutical industry has been facing challenges from nitroso drug substance-related impurities (NDSRIs). In the current study, we synthesized and developed a rapid new UPLC-MS/MS method for the trace-level quantification of ciprofloxacin NDSRIs and a couple of N-nitroso impurities simultaneously. (Q)-SAR methodology was employed to assess and categorize the genotoxicity of all ciprofloxacin N-nitroso impurities. The projected results were positive, and the cohort of concern (CoC) for all three N-nitroso impurities indicates potential genotoxicity. AQbD-driven I-optimal mixture design was used to optimize the mixture of solvents in the method. The chromatographic resolution was accomplished using an Agilent Poroshell 120 Aq-C18 column (150 mm × 4.6 mm, 2.7 µm) in isocratic elution mode with 0.1% formic acid in a mixture of water, acetonitrile, and methanol in the ratio of 475:500:25 v/v/v at a flow rate of 0.5 mL/min. Quantification was carried out using triple quadrupole mass detection with electrospray ionization (ESI) in a multiple reaction monitoring technique. The finalized method was validated successfully, affording ICH guidelines. All N-nitroso impurities revealed excellent linearity over the concentration range of 0.00125-0.0250 ppm. The Pearson correlation coefficient of each N-nitroso impurity was >0.999. The method accuracy recoveries ranged from 93.98 to 108.08% for the aforementioned N-nitrosamine impurities. Furthermore, the method was effectively applied to quantify N-nitrosamine impurities simultaneously in commercially available formulated samples, with its efficiency recurring at trace levels. Thus, the current method is capable of determining the trace levels of three N-nitroso ciprofloxacin impurities simultaneously from the marketed tablet dosage forms for commercial release and stability testing.

8.
Results Chem ; 6: 101019, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37396150

RESUMO

Two potential genotoxic impurities were identified (PGTIs)-viz. 4-amino-1-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2(1H)-one (PGTI-1), and 1-(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidin-2,4(1H,3H)-one (PGTI-II) in the Molnupiravir (MOPR) synthetic routes. COVID-19 disease was treated with MOPR when mild to moderate symptoms occurred. Two (Q)-SAR methods were used to assess the genotoxicity, and projected results were positive and categorized into Class-3 for both PGTIs. A simple, accurate and highly sensitive ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) method was optimized for the simultaneous quantification of the assay, and these impurities in MOPR drug substance and formulation dosage form. The multiple reaction monitoring (MRM) technique was utilized for the quantification. Prior to the validation study, the UPLC-MS method conditions were optimised using fractional factorial design (FrFD). The optimized Critical Method Parameters (CMPs) include the percentage of Acetonitrile in MP B, Concentration of Formic acid in MP A, Cone Voltage, Capillary Voltage, Collision gas flow and Desolvation temperature were determined from the numerical optimization to be 12.50 %, 0.13 %, 13.6 V, 2.6 kV, 850 L/hr and 375 °C, respectively. The optimized chromatographic separation achieved on Waters Acquity HSS T3 C18 column (100 mm × 2.1 mm, 1.8 µm) in a gradient elution mode with 0.13% formic acid in water and acetonitrile as mobile phases, column temperature kept at 35 °C and flow rate at 0.5 mL/min. The method was successfully validated as per ICH guidelines, and demonstrated excellent linearity over the concentration range of 0.5-10 ppm for both PGTIs. The Pearson correlation coefficient of each impurity and MOPR was found to be higher than 0.999, and the recoveries were in between the range of 94.62 to 104.05% for both PGTIs and 99.10 to 100.25% for MOPR. It is also feasible to utilise this rapid method to quantify MOPR accurately in biological samples.

9.
ACS Omega ; 8(24): 21485-21492, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37360430

RESUMO

This study evaluates the unknown qualitative (Q1) and quantitative (Q2) formulas for nasal spray and ophthalmic solution formulations of olopatadine HCl by classical and instrumental techniques to match the generic formula with reference-listed drugs to avoid clinical study. Reverse engineering of olopatadine HCl nasal spray 0.6% and ophthalmic solution 0.1, 0.2% formulations was accurately quantified using a simple and sensitive reversed-phase high-performance liquid chromatography (HPLC) method. Both formulations possess similar components, namely ethylenediaminetetraacetic acid (EDTA), benzalkonium chloride (BKC), sodium chloride (NaCl), and dibasic sodium phosphate (DSP). These components were qualitatively and quantitatively determined using the HPLC, osmometry, and titration techniques. With derivatization techniques, EDTA, BKC, and DSP were determined by ion-interaction chromatography. NaCl in the formulation was quantified by measuring the osmolality and using the subtraction method. A titration method was also used. All the employed methods were linear, accurate, precise, and specific. The correlation coefficient was >0.999 for all components in all the methods. The recovery results ranged from 99.1 to 99.7% for EDTA, 99.1-99.4% for BKC, 99.8-100.8% for DSP, and 99.7-100.1% for NaCl. The obtained % relative standard deviation for precision was 0.9% for EDTA, 0.6% for BKC, 0.9% for DSP, and 1.34% for NaCl. The specificity of the methods in the presence of other components, diluent, and the mobile phase was confirmed, and the analytes were specific.

10.
J AOAC Int ; 105(5): 1247-1257, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35686891

RESUMO

BACKGROUND: Dual therapeutic nature drug mast cell stabilizer and histamine receptor antagonist olopatadine hydrochloride (OPT) nasal spray does not have an official monograph, and no literature is available. Eye drops formulation had the official monograph for impurities, but the determination was done in two methods. OBJECTIVE: A simple and effective green liquid chromatography method to develop and validate for the related substances of OPT nasal spray formulation. METHOD: A 25 min gradient method was employed to separate impurities and OPT with a 1.0 mL/min flow rate using a Boston green C8 (150 mm × 4.6 mm, 5 µm) HPLC column. The set wavelength and column oven temperatures were 299 nm and 30°C, respectively. pH 3.5 phosphate buffer-acetonitrile in the ratio of (70:30, v/v) as mobile phase A and (50:50, v/v) ratio as mobile phase B. A Quality by Design (QbD) based Design of Experiments (DoE) was employed to evaluate the robustness characteristics of the analytical method validation. RESULTS: The obtained RSD from the precision and intermediate precision was 0.4 to 4.1%. The % recovery of the impurities from LOQ to 150% of specification level was 87.5 to 110.3%. The linear regression curves for the impurities with a correlation coefficient of >0.999 indicate that all peak responses are linear with the concentration. The sample and standard solutions were stable for 24 h at benchtop and refrigerator conditions. CONCLUSIONS: All the critical peaks were well separated from the forced degradation studies' diluent, placebo, and generated degradation peaks. The method validation data and QbD based robustness study results indicate that the developed impurities method fits the routine quality control laboratory use. National Environmental Index (NMEI), Green Analytical Procedure Index (GAPI), Analytical Eco-scale and Analytical Greenness (AGREE) tools expressed the method's greenness. HIGHLIGHTS: The proposed method is QbD utilized and green chemistry assessed impurities determination method for OPT in nasal spray formulation.


Assuntos
Contaminação de Medicamentos , Sprays Nasais , Cromatografia Líquida de Alta Pressão/métodos , Cloridrato de Olopatadina , Reprodutibilidade dos Testes
11.
Sci Rep ; 12(1): 19138, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352016

RESUMO

We report an ideal method for quantifying impurities in mycophenolate mofetil drug substances and their oral suspension preparations. We developed a systematic and eco-friendly analytical approach utilizing quality by design (QbD) and green chemistry principles. Initially, the critical method parameters (CMPs) were screened using a D-optimal design. The robust final method conditions were optimized using a systematic central composite design (CCD). Through graphical and numerical optimization, the protocol conditions were augmented. The pH of mobile phase buffer (25 mM KH2PO4) (MP-A), initial gradient composition (% MP-A), flow rate (mL min-1), and column oven temperatures (°C) are 4.05, 87, 0.4, and 30, respectively. The best possible separation between the critical pairs was achieved while using the Waters Acquity UPLC BEH C18 (100 × 2.1) mm, 1.7 µm analytical column. A mixture of water and acetonitrile in the ratio of 30:70 (v/v) was used as mobile phase-B for the gradient elution. The analytical method was validated in agreement with ICH and USP guidelines. The specificity results revealed that no peaks interfered with the impurities and MPM. The mean recovery of the impurities ranged between 96.2 and 102.7%, and the linearity results r > 0.999 across the range of LOQ - 150%. The precision results (%RSD) ranged between 0.8 and 4.5%. The degradation products formed during the base-induced degradation were identified as isomers of mycophenolic acid and sorbitol esters using Q-ToF LC-MS and their molecular and fragment ion peaks. The developed method eco-friendliness and greenness were assessed using analytical greenness (AGREE), green analytical procedure index (GAPI), and analytical eco score, and found it is green.


Assuntos
Contaminação de Medicamentos , Ácido Micofenólico , Cromatografia Líquida de Alta Pressão/métodos , Contaminação de Medicamentos/prevenção & controle , Limite de Detecção , Reprodutibilidade dos Testes
12.
J Chromatogr A ; 1679: 463380, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35970050

RESUMO

An anti-inflammatory skin condition is treated with fluocinolone acetonide (FLA), a synthetic corticoid. The current study aims to develop a stability-indicating UPLC method for the determination of impurities present in fluocinolone acetonide and its topical oil formulation. The method development was performed by implementing Analytical Quality by Design (AQbD) and green chemistry principles. A detailed risk assessment was conducted based on the cause-and-effect relationship. d-optimal split-plot design was employed to screen the critical method parameters (CMPs). The central composite design (CCD) was employed to optimize the final method conditions. p-values for the model and lack of fit were <0.0001 and >0.05, respectively, which indicates the best fit statistical model for the studied responses (peak resolutions R1 - R5). The critical method attributes (CMAs) and CMPs such as the ratio of ACN: Water in mobile phase-B as 600:400 (v/v), the ratio of mobile phase-A & B in initial gradient program as 60:40, flow rate as 0.3 mL min-1, and column oven temperature as 50 °C were optimized from the CCD. The best possible separation among all components was achieved with a gradient elution using Waters Acquity UPLC HSS C18, 100 mm × 2.1 mm, 1.8 µm analytical column. The optimized gradient program is time (min)/%B: 0.0/40, 1.5/40, 6.0/60, 8.0/70, 9.0/80, 12.0/100, 15.0/100, 15.1/40 & 18.0/40. Optimization of diluent is highly critical for any oil-based formulations. The experimental results show that acetonitrile is the most suitable diluent for the current study. The method validation was executed in compliance with ICH and USP 〈1225〉 guidelines. Mean recovery of the impurities ranged between 95.7 and 105.7%, the correlation coefficient(r) was> 0.999, the RSD values (n = 6) ranged between 0.9 - 3.2% across the range for LOQ - 150% levels. The peaks from the specificity study did not interfere with the known and active analyte peaks. The major degradation products were identified as Imp-C, B, and A, and established their degradation pathways from FLA based on the stress studies. The method greenness was evaluated using GAPI, AGREE and analytical eco scale and found that the method is green.


Assuntos
Excipientes , Fluocinolona Acetonida , Cromatografia Líquida de Alta Pressão , Reprodutibilidade dos Testes , Projetos de Pesquisa
13.
Anal Methods ; 13(33): 3705-3723, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34338254

RESUMO

The current study presents a specific, accurate, simple, and rapid UPLC method for the determination of impurities present in cream and ointment formulations of betamethasone dipropionate (BMD). The analytical method was optimized using central composite design (CCD) prior to the method validation. Critical Process Parameters (CPPs) and Critical Quality Attributes (CQAs) were identified for the analytical method. A total of 17 experiments were carried out and verified the individual and interaction effects of CPPs. The CPPs were optimized using a numerical method by keeping the CQAs within the desired range (R1-R2: minimize & R3-R5: maximize) as an optimization goal. Optimized chromatographic separation was achieved using a Waters Acquity UPLC BEH C18, 100 mm × 2.1 mm, 1.7 µm column with a gradient mode of elution comprising 20 mM phosphate buffer: ACN 70 : 30, v/v as mobile phase-A and 20 mM phosphate buffer: ACN 30 : 70, v/v as mobile phase-B. The developed method was validated in accordance with ICH guidelines. The validation data conclude that the developed method is specific, accurate, linear, precise, rugged, and robust for the quantification of impurities in BMD topical formulations.


Assuntos
Betametasona , Betametasona/análogos & derivados , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA