Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(1): e2, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31680162

RESUMO

The lack of endogenous RNAi machinery in the malaria parasite Plasmodium hampers gene annotation and hence antimalarial drug and vaccine development. Here, we engineered rodent Plasmodium berghei to express a minimal, non-canonical RNAi machinery that solely requires Argonaute 2 (Ago2) and a modified short hairpin RNA, so-called AgoshRNA. Using this strategy, we achieved robust and specific gene knockdown throughout the entire parasite life cycle. We also successfully silenced the endogenous gene perforin-like protein 2, phenocopying a full gene knockout. Transcriptionally restricting Ago2 expression to the liver stage further enabled us to perform a stage-specific gene knockout. The RNAi-competent Plasmodium lines reported here will be a valuable resource for loss-of-function phenotyping of the many uncharacterized genes of Plasmodium in low or high throughput, without the need to engineer the target gene locus. Thereby, our new strategy and transgenic Plasmodium lines will ultimately benefit the discovery of urgently needed antimalarial drug and vaccine candidates. Generally, the ability to render RNAi-negative organisms RNAi-competent by mere introduction of two components, Ago2 and AgoshRNA, is a unique paradigm that should find broad applicability in other species.


Assuntos
Proteínas Argonautas/genética , Engenharia Genética/métodos , Plasmodium berghei/genética , Proteínas de Protozoários/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Anopheles/parasitologia , Proteínas Argonautas/metabolismo , Feminino , Genes Reporter , Proteínas de Fluorescência Verde/antagonistas & inibidores , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Estágios do Ciclo de Vida/genética , Camundongos , Camundongos Endogâmicos C57BL , Mosquitos Vetores/parasitologia , Organismos Geneticamente Modificados , Perforina/genética , Perforina/metabolismo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , RNA Interferente Pequeno/metabolismo , Transgenes
2.
Immunology ; 159(2): 193-204, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31631339

RESUMO

Excessive inflammatory immune responses during infections with Plasmodium parasites are responsible for severe complications such as cerebral malaria (CM) that can be studied experimentally in mice. Dendritic cells (DCs) activate cytotoxic CD8+ T-cells and initiate immune responses against the parasites. Batf3-/- mice lack a DC subset, which efficiently induces strong CD8 T-cell responses by cross-presentation of exogenous antigens. Here we show that Batf3-/- mice infected with Plasmodium berghei ANKA (PbA) were protected from experimental CM (ECM), characterized by a stable blood-brain barrier (BBB) and significantly less infiltrated peripheral immune cells in the brain. Importantly, the absence of ECM in Batf3-/- mice correlated with attenuated responses of cytotoxic T-cells, as their parasite-specific lytic activity as well as the production of interferon gamma and granzyme B were significantly decreased. Remarkably, spleens of ECM-protected Batf3-/- mice had elevated levels of regulatory immune cells and interleukin 10. Thus, protection from ECM in PbA-infected Batf3-/- mice was associated with the absence of strong CD8+ T-cell activity and induction of immunoregulatory mediators and cells.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Encéfalo/imunologia , Células Dendríticas/imunologia , Malária Cerebral/prevenção & controle , Plasmodium berghei/patogenicidade , Proteínas Repressoras/deficiência , Linfócitos T Citotóxicos/imunologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/parasitologia , Encéfalo/metabolismo , Encéfalo/parasitologia , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/parasitologia , Modelos Animais de Doenças , Feminino , Granzimas/imunologia , Granzimas/metabolismo , Interações Hospedeiro-Parasita , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium berghei/imunologia , Proteínas Repressoras/genética , Baço/imunologia , Baço/metabolismo , Baço/parasitologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/parasitologia
3.
Cell Microbiol ; 21(5): e12999, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30597708

RESUMO

Ferlins mediate calcium-dependent vesicular fusion. Although conserved throughout eukaryotic evolution, their function in unicellular organisms including apicomplexan parasites is largely unknown. Here, we define a crucial role for a ferlin-like protein (FLP) in host-to-vector transmission of the rodent malaria parasite Plasmodium berghei. Infection of the mosquito vectors requires the formation of free gametes and their fertilisation in the mosquito midgut. Mature gametes will only emerge upon secretion of factors that stimulate the disruption of the red blood cell membrane and the parasitophorous vacuole membrane. Genetic depletion of FLP in sexual stages leads to a complete life cycle arrest in the mosquito. Although mature gametes form normally, mutants lacking FLP remain trapped in the red blood cell. The egress defect is rescued by detergent-mediated membrane lysis. In agreement with ferlin vesicular localisation, HA-tagged FLP labels intracellular speckles, which relocalise to the cell periphery during gamete maturation. Our data define FLP as a novel critical factor for Plasmodium fertilisation and transmission and suggest an evolutionarily conserved example of ferlin-mediated exocytosis.


Assuntos
Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Células Germinativas/metabolismo , Malária/transmissão , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Animais , Culicidae/parasitologia , Detergentes/farmacologia , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/genética , Membrana Eritrocítica/parasitologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Exocitose/genética , Feminino , Células Germinativas/citologia , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/ultraestrutura , Interações Hospedeiro-Patógeno , Estágios do Ciclo de Vida/genética , Malária/genética , Malária/metabolismo , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Mosquitos Vetores/genética , Mosquitos Vetores/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/patogenicidade , Domínios Proteicos/genética , Proteínas de Protozoários/genética
4.
Cell Microbiol ; 21(10): e13088, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31364224

RESUMO

Intracellular Plasmodium parasites develop inside a parasitophorous vacuole (PV), a specialised compartment enclosed by a membrane (PVM) that contains proteins of both host and parasite origin. Although exported protein 1 (EXP1) is one of the earliest described parasitic PVM proteins, its function throughout the Plasmodium life cycle remains insufficiently understood. Here, we show that whereas the N-terminus of Plasmodium berghei EXP1 (PbEXP1) is essential for parasite survival in the blood, parasites lacking PbEXP1's entire C-terminal (CT) domain replicate normally in the blood but cause less severe pathology than their wild-type counterparts. Moreover, truncation of PbEXP1's CT domain not only impairs parasite development in the mosquito but also abrogates PbEXP1 localization to the PVM of intrahepatic parasites, severely limiting their replication and preventing their egress into the blood. Our findings highlight the importance of EXP1 during the Plasmodium life cycle and identify this protein as a promising target for antiplasmodial intervention.


Assuntos
Culicidae/parasitologia , Fígado/parasitologia , Plasmodium berghei/genética , Domínios Proteicos/genética , Proteínas de Protozoários/genética , Animais , Linhagem Celular Tumoral , Eritrócitos/parasitologia , Feminino , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/parasitologia , Estágios do Ciclo de Vida/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismo , Vacúolos/parasitologia
5.
Amino Acids ; 52(5): 693-710, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32367435

RESUMO

In this study, a determination of Troponin I and creatine kinase activity in whole-blood samples in a cohort of 100 small infants in the age of 2-5 years from Uganda with complicated Plasmodium falciparum malaria suggests the prevalence of cardiac symptoms in comparison to non-infected, healthy patients. Troponin I and creatine kinase activity increased during infection. Different reports showed that complicated malaria coincides with hypoxia in children. The obtained clinical data prompted us to further elucidate the underlying regulatory mechanisms of cardiac involvement in human cardiac ventricular myocytes. Complicated malaria is the most common clinical presentation and might induce cardiac impairment by hypoxia. Eukaryotic initiation factor 5A (eIF-5A) is involved in hypoxia induced factor (HIF-1α) expression. EIF-5A is a protein posttranslationally modified by hypusination involving catalysis of the two enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase. Treatment of human cardiomyocytes with GC7, an inhibitor of DHS, catalyzing the first step in hypusine biosynthesis led to a decrease in proinflammatory and proapoptotic myocardial caspase-1 activity in comparison to untreated cardiomyocytes. This effect was even more pronounced after co-administration of GC7 and GPI from P. falciparum simulating the pathology of severe malaria. Moreover, in comparison to untreated and GC7-treated cardiomyocytes, co-administration of GC7 and GPI significantly decreased the release of cytochrome C and lactate from damaged mitochondria. In sum, coadministration of GC7 prevented cardiac damage driven by hypoxia in vitro. Our approach demonstrates the potential of the pharmacological inhibitor GC7 to ameliorate apoptosis in cardiomyocytes in an in vitro model simulating severe malaria. This regulatory mechanism is based on blocking EIF-5A hypusination.


Assuntos
Apoptose , Malária/patologia , Miócitos Cardíacos/patologia , Parasitemia/patologia , Fatores de Iniciação de Peptídeos/metabolismo , Plasmodium berghei/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Animais , Pré-Escolar , Feminino , Humanos , Lactente , Malária/metabolismo , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Parasitemia/metabolismo , Parasitemia/parasitologia , Fatores de Iniciação de Peptídeos/genética , Proteínas de Ligação a RNA/genética , Fator de Iniciação de Tradução Eucariótico 5A
6.
Proc Natl Acad Sci U S A ; 114(7): E1138-E1147, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28137845

RESUMO

The first, obligatory replication phase of malaria parasite infections is characterized by rapid expansion and differentiation of single parasites in liver cells, resulting in the formation and release of thousands of invasive merozoites into the bloodstream. Hepatic Plasmodium development occurs inside a specialized membranous compartment termed the parasitophorous vacuole (PV). Here, we show that, during the parasite's hepatic replication, the C-terminal region of the parasitic PV membrane protein exported protein 1 (EXP-1) binds to host Apolipoprotein H (ApoH) and that this molecular interaction plays a pivotal role for successful Plasmodium liver-stage development. Expression of a truncated EXP-1 protein, missing the specific ApoH interaction site, or down-regulation of ApoH expression in either hepatic cells or mouse livers by RNA interference resulted in impaired intrahepatic development. Furthermore, infection of mice with sporozoites expressing a truncated version of EXP-1 resulted in both a significant reduction of liver burden and delayed blood-stage patency, leading to a disease outcome different from that generally induced by infection with wild-type parasites. This study identifies a host-parasite protein interaction during the hepatic stage of infection by Plasmodium parasites. The identification of such vital interactions may hold potential toward the development of novel malaria prevention strategies.


Assuntos
Fígado/parasitologia , Malária/parasitologia , Proteínas de Membrana/metabolismo , Plasmodium berghei/fisiologia , Proteínas de Protozoários/metabolismo , beta 2-Glicoproteína I/metabolismo , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Regulação para Baixo , Genes de Protozoários , Células HEK293 , Hepatócitos/parasitologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Deleção de Sequência , Esporozoítos/fisiologia , Vacúolos/parasitologia , beta 2-Glicoproteína I/antagonistas & inibidores , beta 2-Glicoproteína I/genética
7.
Radiology ; 290(2): 359-367, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30615566

RESUMO

Purpose To investigate the association of inflammation and brain edema in a cerebral malaria (CM) mouse model with a combination of bis-5-hydroxy-tryptamide-diethylenetriaminepentaacetate gadolinium, referred to as MPO-Gd, and cross-linked iron oxide nanoparticle (CLIO-NP) imaging. Materials and Methods Female wild-type (n = 23) and myeloperoxidase (MPO) knock-out (n = 5) mice were infected with the Plasmodium berghei ANKA strain from May 2016 to July 2018. Seven healthy mice served as control animals. At a Rapid Murine Coma and Behavioral Scale (RMCBS) score of less than 15, mice underwent MRI at 9.4 T and received gadodiamide, MPO-Gd, or CLIO-NPs. T1-weighted MRI was used to assess MPO activity, and T2*-weighted MRI was used to track CLIO-NPs. Immunofluorescent staining and flow cytometric analyses characterized CLIO-NPs, MPO, endothelial cells, and leukocytes. An unpaired, two-tailed Student t test was used to compare groups; Spearman correlation analysis was used to determine the relationship of imaging parameters to clinical severity. Results MPO-Gd enhancement occurred in inflammatory CM hotspots (olfactory bulb > rostral migratory stream > brainstem > cortex, P < .05 for all regions compared with control mice; mean olfactory bulb signal intensity ratio: 1.40 ± 0.07 vs 0.96 ± 0.01, P < .01). The enhancement was reduced in MPO knockout mice (mean signal intensity ratio at 60 minutes: 1.13 ± 0.04 vs 1.40 ± 0.07 in CM, P < .05). Blood-brain barrier compromise was suggested by parenchymal gadolinium enhancement, leukocyte recruitment, and endothelial activation. CLIO-NPs accumulated mainly intravascularly and at the vascular endothelium. CLIO-NPs were also found in the choroid plexus, indicating inflammation of the ventricular system. Blood-cerebrospinal fluid barrier breakdown showed correlation with brain swelling (r2: 0.55, P < .01) and RMCBS score (r2: 0.75, P < .001). Conclusion Iron oxide nanoparticle imaging showed strong inflammatory involvement of the microvasculature in a murine model of cerebral malaria. Furthermore, bis-5-hydroxy-tryptamide-diethylenetriaminepentaacetate gadolinium imaging depicted parenchymal and intraventricular inflammation. This combined molecular imaging approach links vascular inflammation to breakdown of the blood-brain barrier and blood-cerebrospinal fluid barrier that correlate with global brain edema and disease severity. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Kiessling in this issue.


Assuntos
Edema Encefálico , Encefalite , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Malária Cerebral , Peroxidase/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/enzimologia , Encéfalo/patologia , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/enzimologia , Edema Encefálico/parasitologia , Edema Encefálico/patologia , Modelos Animais de Doenças , Encefalite/diagnóstico por imagem , Encefalite/enzimologia , Encefalite/parasitologia , Encefalite/patologia , Feminino , Malária Cerebral/complicações , Malária Cerebral/diagnóstico por imagem , Malária Cerebral/enzimologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
PLoS Pathog ; 12(3): e1005470, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26964100

RESUMO

It is poorly understood how progressive brain swelling in experimental cerebral malaria (ECM) evolves in space and over time, and whether mechanisms of inflammation or microvascular sequestration/obstruction dominate the underlying pathophysiology. We therefore monitored in the Plasmodium berghei ANKA-C57BL/6 murine ECM model, disease manifestation and progression clinically, assessed by the Rapid-Murine-Coma-and-Behavioral-Scale (RMCBS), and by high-resolution in vivo MRI, including sensitive assessment of early blood-brain-barrier-disruption (BBBD), brain edema and microvascular pathology. For histological correlation HE and immunohistochemical staining for microglia and neuroblasts were obtained. Our results demonstrate that BBBD and edema initiated in the olfactory bulb (OB) and spread along the rostral-migratory-stream (RMS) to the subventricular zone of the lateral ventricles, the dorsal-migratory-stream (DMS), and finally to the external capsule (EC) and brainstem (BS). Before clinical symptoms (mean RMCBS = 18.5±1) became evident, a slight, non-significant increase of quantitative T2 and ADC values was observed in OB+RMS. With clinical manifestation (mean RMCBS = 14.2±0.4), T2 and ADC values significantly increased along the OB+RMS (p = 0.049/p = 0.01). Severe ECM (mean RMCBS = 5±2.9) was defined by further spread into more posterior and deeper brain structures until reaching the BS (significant T2 elevation in DMS+EC+BS (p = 0.034)). Quantitative automated histological analyses confirmed microglial activation in areas of BBBD and edema. Activated microglia were closely associated with the RMS and neuroblasts within the RMS were severely misaligned with respect to their physiological linear migration pattern. Microvascular pathology and ischemic brain injury occurred only secondarily, after vasogenic edema formation and were both associated less with clinical severity and the temporal course of ECM. Altogether, we identified a distinct spatiotemporal pattern of microglial activation in ECM involving primarily the OB+RMS axis, a distinct pathway utilized by neuroblasts and immune cells. Our data suggest significant crosstalk between these two cell populations to be operative in deeper brain infiltration and further imply that the manifestation and progression of cerebral malaria may depend on brain areas otherwise serving neurogenesis.


Assuntos
Anopheles/parasitologia , Malária Cerebral/diagnóstico por imagem , Plasmodium berghei/fisiologia , Animais , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Feminino , Seguimentos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Malária Cerebral/parasitologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/diagnóstico por imagem , Células-Tronco Neurais/diagnóstico por imagem , Bulbo Olfatório/diagnóstico por imagem , Radiografia
9.
PLoS Pathog ; 12(7): e1005710, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27409081

RESUMO

Parasites causing malaria need to migrate in order to penetrate tissue barriers and enter host cells. Here we show that the actin filament-binding protein coronin regulates gliding motility in Plasmodium berghei sporozoites, the highly motile forms of a rodent malaria-causing parasite transmitted by mosquitoes. Parasites lacking coronin show motility defects that impair colonization of the mosquito salivary glands but not migration in the skin, yet result in decreased transmission efficiency. In non-motile sporozoites low calcium concentrations mediate actin-independent coronin localization to the periphery. Engagement of extracellular ligands triggers an intracellular calcium release followed by the actin-dependent relocalization of coronin to the rear and initiation of motility. Mutational analysis and imaging suggest that coronin organizes actin filaments for productive motility. Using coronin-mCherry as a marker for the presence of actin filaments we found that protein kinase A contributes to actin filament disassembly. We finally speculate that calcium and cAMP-mediated signaling regulate a switch from rapid parasite motility to host cell invasion by differentially influencing actin dynamics.


Assuntos
Citoesqueleto de Actina/metabolismo , Malária/parasitologia , Proteínas dos Microfilamentos/metabolismo , Plasmodium berghei/metabolismo , Esporozoítos/metabolismo , Animais , Western Blotting , Culicidae/microbiologia , Análise Mutacional de DNA , Modelos Animais de Doenças , Células Hep G2 , Humanos , Insetos Vetores/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/metabolismo , Transfecção
10.
Int J Med Microbiol ; 308(1): 107-117, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28964681

RESUMO

The intracellular development and differentiation of the Plasmodium parasite in the host liver is a prerequisite for the actual onset of malaria disease pathology. Since liver-stage infection is clinically silent and can be completely eliminated by sterilizing immune responses, it is a promising target for urgently needed innovative antimalarial drugs and/or vaccines. Discovered more than 65 years ago, these stages remain poorly understood regarding their molecular repertoire and interaction with their host cells in comparison to the pathogenic erythrocytic stages. The differentiating and replicative intrahepatic parasite resides in a membranous compartment called the parasitophorous vacuole, separating it from the host-cell cytoplasm. Here we outline seminal work that contributed to our present understanding of the fundamental dynamic cellular processes of the intrahepatic malarial parasite with both specific host-cell factors and compartments.


Assuntos
Interações Hospedeiro-Parasita , Fígado/parasitologia , Plasmodium/crescimento & desenvolvimento , Vacúolos/parasitologia , Animais , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Humanos , Membranas Intracelulares/metabolismo , Malária/parasitologia , Plasmodium/metabolismo , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismo
11.
J Immunol ; 194(10): 4860-70, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25862814

RESUMO

Cerebral malaria is one of the most severe complications of malaria disease, attributed to a complicated series of immune reactions in the host. The syndrome is marked by inflammatory immune responses, margination of leukocytes, and parasitized erythrocytes in cerebral vessels leading to breakdown of the blood-brain barrier. We show that chemical attenuation of the parasite at the very early, clinically silent liver stage suppresses parasite development, delays the time until parasites establish blood-stage infection, and provokes an altered host immune response, modifying immunopathogenesis and protecting from cerebral disease. The early response is proinflammatory and cell mediated, with increased T cell activation in the liver and spleen, and greater numbers of effector T cells, cytokine-secreting T cells, and proliferating, proinflammatory cytokine-producing T cells. Dendritic cell numbers, T cell activation, and infiltration of CD8(+) T cells to the brain are decreased later in infection, possibly mediated by the anti-inflammatory cytokine IL-10. Strikingly, protection can be transferred to naive animals by adoptive transfer of lymphocytes from the spleen at very early times of infection. Our data suggest that a subpopulation belonging to CD8(+) T cells as early as day 2 postinfection is responsible for protection. These data indicate that liver stage-directed early immune responses can moderate the overall downstream host immune response and modulate severe malaria outcome.


Assuntos
Fígado/imunologia , Fígado/virologia , Malária/imunologia , Malária/patologia , Aminoquinolinas/farmacologia , Animais , Antivirais/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Citometria de Fluxo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei , Reação em Cadeia da Polimerase em Tempo Real
12.
Traffic ; 15(4): 362-82, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24423236

RESUMO

For membrane-bound intracellular pathogens, the surrounding vacuole is the portal of communication with the host cell. The parasitophorous vacuole (PV) harboring intrahepatocytic Plasmodium parasites satisfies the parasites' needs of nutrition and protection from host defenses to allow the rapid parasite growth that occurs during the liver stage of infection. In this study, we visualized the PV membrane (PVM) and the associated tubovesicular network (TVN) through fluorescent tagging of two PVM-resident Plasmodium berghei proteins, UIS4 and IBIS1. This strategy revealed previously unrecognized dynamics with which these membranes extend throughout the host cell. We observed dynamic vesicles, elongated clusters of membranes and long tubules that rapidly extend and contract from the PVM in a microtubule-dependent manner. Live microscopy, correlative light-electron microscopy and fluorescent recovery after photobleaching enabled a detailed characterization of these membranous features, including velocities, the distribution of UIS4 and IBIS1, and the connectivity of PVM and TVN. Labeling of host cell compartments revealed association of late endosomes and lysosomes with the elongated membrane clusters. Moreover, the signature host autophagosome protein LC3 was recruited to the PVM and TVN and colocalized with UIS4. Together, our data demonstrate that the membranes surrounding intrahepatic Plasmodium are involved in active remodeling of host cells.


Assuntos
Fígado/parasitologia , Plasmodium/metabolismo , Animais , Membrana Celular/metabolismo , Interações Hospedeiro-Parasita , Plasmodium/patogenicidade
13.
Antimicrob Agents Chemother ; 59(1): 654-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25313210

RESUMO

wALADin1 benzimidazoles are specific inhibitors of δ-aminolevulinic acid dehydratase from Wolbachia endobacteria of filarial nematodes. We report that wALADin1 and two derivatives killed blood stage Plasmodium falciparum in vitro (50% inhibitory concentrations, 39, 7.7, and 12.8 µM, respectively). One of these derivatives inhibited gliding motility of Plasmodium berghei ANKA infectious sporozoites with nanomolar affinity and blocked invasion into hepatocytes but did not affect intrahepatocytic replication. Hence, wALADin1 benzimidazoles are tools to study gliding motility and potential antiplasmodial drug candidates.


Assuntos
Antimaláricos/farmacologia , Benzimidazóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Sintase do Porfobilinogênio/antagonistas & inibidores , Benzimidazóis/química , Humanos , Concentração Inibidora 50 , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Tiofenos/química , Tiofenos/farmacologia , Toxoplasma/efeitos dos fármacos
14.
Malar J ; 14: 36, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25627880

RESUMO

BACKGROUND: Whole-parasite immunization remains the benchmark in malaria vaccine development. A major bottleneck in the translation of whole-parasite immunization towards routine vaccination is the mode of administration, since high degrees of protection are currently only achieved by intravenous, and not by intradermal or subcutaneous injection of viable parasites. It is known that only a small proportion of subcutaneously administered parasites reach the subsequent liver stage and low parasite liver load was shown to be associated with low protective efficacy. The objective of this analysis was to evaluate whether the liver load following subcutaneous parasite injection could be augmented by co-administration of pro-inflammatory or anti-coagulatory drugs. METHODS: In the C57BL/6 Plasmodium berghei ANKA model, the clinical outcome (time to patent blood stage infection and survival) and relative parasite liver load was assessed in mice infected by subcutaneous or intramuscular sporozoite (SPZ) administration in the presence or absence of histamine and heparin supplementation in comparison to intravenously administered SPZ. In addition, a vaccination experiment was carried out to assess the protective efficacy of an improved, histamine-supplemented subcutaneous immunization regimen. RESULTS: The parasite liver load following subcutaneous SPZ administration can be significantly increased by co-administration of histamine and heparin. A dose-dependent relation between parasite liver load and histamine dosage was observed. However, despite a relatively high parasite liver load, the protective efficacy of histamine-supplemented subcutaneous immunization remains inferior as compared to intravenous SPZ administration. CONCLUSIONS: Histamine supplementation might facilitate the future development of a non-intravenous whole-parasite vaccine. Further investigations are needed to reveal the effect of histamine supplementation and subcutaneous SPZ administration on the acquisition of protective immunity.


Assuntos
Histamina/farmacologia , Fígado/efeitos dos fármacos , Fígado/parasitologia , Vacinas Antimaláricas/imunologia , Plasmodium berghei/imunologia , Esporozoítos/imunologia , Animais , Malária/imunologia , Malária/mortalidade , Malária/parasitologia , Malária/prevenção & controle , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/química , Camundongos Endogâmicos C57BL , Carga Parasitária
15.
Mol Ther ; 22(12): 2130-2141, 2014 12.
Artigo em Inglês | MEDLINE | ID: mdl-25189739

RESUMO

Malaria, caused by protozoan Plasmodium parasites, remains a prevalent infectious human disease due to the lack of an efficient and safe vaccine. This is directly related to the persisting gaps in our understanding of the parasite's interactions with the infected host, especially during the clinically silent yet essential liver stage of Plasmodium development. Previously, we and others showed that genetically attenuated parasites (GAP) that arrest in the liver induce sterile immunity, but only upon multiple administrations. Here, we comprehensively studied hepatic gene and miRNA expression in GAP-injected mice, and found both a broad activation of IFNγ-associated pathways and a significant increase of murine microRNA-155 (miR-155), that was especially pronounced in non-parenchymal cells including liver-resident macrophages (Kupffer cells). Remarkably, ectopic upregulation of this miRNA in the liver of mice using robust hepatotropic adeno-associated virus 8 (AAV8) vectors enhanced GAP's protective capacity substantially. In turn, this AAV8-mediated miR-155 expression permitted a reduction of GAP injections needed to achieve complete protection against infectious parasite challenge from previously three to only one. Our study highlights a crucial role of mammalian miRNAs in Plasmodium liver infection in vivo and concurrently implies their great potential as future immune-augmenting agents in improved vaccination regimes against malaria and other diseases.


Assuntos
Dependovirus/genética , Vetores Genéticos/administração & dosagem , Vacinas Antimaláricas/administração & dosagem , Malária/prevenção & controle , MicroRNAs/genética , RNA Mensageiro/imunologia , Animais , Modelos Animais de Doenças , Células HEK293 , Humanos , Fígado/metabolismo , Fígado/patologia , Malária/genética , Malária/patologia , Vacinas Antimaláricas/genética , Masculino , Camundongos , MicroRNAs/metabolismo , Plasmodium berghei/patogenicidade , Regulação para Cima , Vacinas Atenuadas/genética
16.
Int J Med Microbiol ; 303(8): 539-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23992634

RESUMO

We present a new class of hybrid molecules consisting of the established antiplasmodial drugs primaquine and chloroquine. No drug is known to date that acts comparably against all stages of Plasmodium in its life cycle. Starting from available precursors, we designed and synthesized a new-generation compound consisting of both primaquine and chloroquine components, with the intent to produce agents that exhibit bioactivity against different stages of the parasite's life cycle. In vitro, the hybrid molecule 3 displays activity against both asexual and sexual P. falciparum blood stages as well as P. berghei sporozoites and liver stages. In vivo, the hybrid elicits activity against P. berghei liver and blood stages. Our results successfully validate the concept of utilizing one compound to combine different modes of action that attack different Plasmodium stages in the mammalian host. It is our hope that the novel design of such compounds will outwit the pathogen in the spread of drug resistance. Based on the optimized synthetic pathway, the compound is accessible in a smooth and versatile way and open for potential further molecular modification.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Primaquina/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Antimaláricos/uso terapêutico , Sangue/parasitologia , Quimera , Cloroquina/síntese química , Cloroquina/química , Cloroquina/uso terapêutico , Modelos Animais de Doenças , Feminino , Fígado/parasitologia , Malária/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Primaquina/síntese química , Primaquina/química , Primaquina/uso terapêutico
17.
BMC Microbiol ; 12: 107, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22694849

RESUMO

BACKGROUND: Deoxyhypusine synthase (DHS) catalyzes the first step in hypusine biosynthesis of eukaryotic initiation factor 5A (eIF-5A) in Plasmodium falciparum. Target evaluation of parasitic DHS has recently been performed with CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease. CNI-1493 prevented infected mice from experimental cerebral malaria by decreasing the levels in hypusinated eIF-5A and serum TNF, implicating a link between cytokine signaling and the hypusine pathway.Therefore we addressed the question whether either DHS itself or eIF-5A is required for the outcome of severe malaria. In a first set of experiments we performed an in vitro knockdown of the plasmodial eIF-5A and DHS proteins by RNA interference (RNAi) in 293 T cells. Secondly, transfection of siRNA constructs into murine Plasmodium schizonts was performed which, in turn, were used for infection. RESULTS: 293 T cells treated with plasmodial DHS- and eIF-5A specific siRNAs or control siRNAs were analyzed by RT-PCR to determine endogenous dhs -and eIF-5A mRNA levels. The expressed DHS-shRNA and EIF-5A-shRNA clearly downregulated the corresponding transcript in these cells. Interestingly, mice infected with transgenic schizonts expressing either the eIF-5A or dhs shRNA showed an elevated parasitemia within the first two days post infection which then decreased intermittently. These results were obtained without drug selection. Blood samples, which were taken from the infected mice at day 5 post infection with either the expressed EIF-5A-shRNA or the DHS-shRNA were analyzed by RT-PCR and Western blot techniques, demonstrating the absence of either the hypusinated form of eIF-5A or DHS. CONCLUSIONS: Infection of NMRI mice with schizonts from the lethal P. berghei ANKA wildtype strain transgenic for plasmodial eIF-5A-specific shRNA or DHS-specific shRNA resulted in low parasitemia 2-9 days post infection before animals succumbed to hyperparasitemia similar to infections with the related but non-lethal phenotype P. berghei strain NK65. RT-PCR and Western blot experiments performed with blood from the transfected erythrocytic stages showed that both genes are important for the proliferation of the parasite. Moreover, these experiments clearly demonstrate that the hypusine pathway in Plasmodium is linked to human iNos induction.


Assuntos
Regulação da Expressão Gênica , Inativação Gênica , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Plasmodium berghei/patogenicidade , Plasmodium falciparum/patogenicidade , Proteínas de Ligação a RNA/metabolismo , Animais , Western Blotting , Linhagem Celular , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Malária/parasitologia , Malária/patologia , Camundongos , Camundongos Transgênicos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Parasitemia , Fatores de Iniciação de Peptídeos/antagonistas & inibidores , Plasmodium berghei/genética , Plasmodium falciparum/genética , Interferência de RNA , Proteínas de Ligação a RNA/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Virulência , Fator de Iniciação de Tradução Eucariótico 5A
18.
Life Sci Alliance ; 5(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35260473

RESUMO

Brain swelling occurs in cerebral malaria (CM) and may either reverse or result in fatal outcome. It is currently unknown how brain swelling in CM reverses, as brain swelling at the acute stage is difficult to study in humans and animal models with reliable induction of reversible edema are not known. In this study, we show that reversible brain swelling in experimental murine CM can be induced reliably after single vaccination with radiation-attenuated sporozoites as proven by in vivo high-field magnetic resonance imaging. Our results provide evidence that brain swelling results from transcellular blood-brain barrier disruption (BBBD), as revealed by electron microscopy. This mechanism enables reversal of brain swelling but does not prevent persistent focal brain damage, evidenced by microhemorrhages, in areas of most severe BBBD. In adult CM patients magnetic resonance imaging demonstrate microhemorrhages in more than one third of patients with reversible edema, emphasizing similarities of the experimental model and human disease. Our data suggest that targeting transcellular BBBD may represent a promising adjunct therapeutic approach to reduce edema and may improve neurological outcome.


Assuntos
Edema Encefálico , Malária Cerebral , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Edema Encefálico/diagnóstico por imagem , Edema Encefálico/etiologia , Edema Encefálico/patologia , Edema/patologia , Humanos , Malária Cerebral/patologia , Camundongos
19.
Nature ; 433(7022): 164-7, 2005 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-15580261

RESUMO

Malaria is a mosquito-borne disease that is transmitted by inoculation of the Plasmodium parasite sporozoite stage. Sporozoites invade hepatocytes, transform into liver stages, and subsequent liver-stage development ultimately results in release of pathogenic merozoites. Liver stages of the parasite are a prime target for malaria vaccines because they can be completely eliminated by sterilizing immune responses, thereby preventing malarial infection. Using expression profiling, we previously identified genes that are only expressed in the pre-erythrocytic stages of the parasite. Here, we show by reverse genetics that one identified gene, UIS3 (upregulated in infective sporozoites gene 3), is essential for early liver-stage development. uis3-deficient sporozoites infect hepatocytes but are unable to establish blood-stage infections in vivo, and thus do not lead to disease. Immunization with uis3-deficient sporozoites confers complete protection against infectious sporozoite challenge in a rodent malaria model. This protection is sustained and stage specific. Our findings demonstrate that a safe and effective, genetically attenuated whole-organism malaria vaccine is possible.


Assuntos
Vacinas Antimaláricas/genética , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Malária/parasitologia , Plasmodium berghei/genética , Plasmodium berghei/imunologia , Animais , Feminino , Deleção de Genes , Marcação de Genes , Fígado/parasitologia , Malária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/patogenicidade , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
20.
Front Immunol ; 12: 711876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659202

RESUMO

Cerebral malaria is a potentially lethal disease, which is caused by excessive inflammatory responses to Plasmodium parasites. Here we use a newly developed transgenic Plasmodium berghei ANKA (PbAAma1OVA) parasite that can be used to study parasite-specific T cell responses. Our present study demonstrates that Ifnar1-/- mice, which lack type I interferon receptor-dependent signaling, are protected from experimental cerebral malaria (ECM) when infected with this novel parasite. Although CD8+ T cell responses generated in the spleen are essential for the development of ECM, we measured comparable parasite-specific cytotoxic T cell responses in ECM-protected Ifnar1-/- mice and wild type mice suffering from ECM. Importantly, CD8+ T cells were increased in the spleens of ECM-protected Ifnar1-/- mice and the blood-brain-barrier remained intact. This was associated with elevated splenic levels of CCL5, a T cell and eosinophil chemotactic chemokine, which was mainly produced by eosinophils, and an increase in eosinophil numbers. Depletion of eosinophils enhanced CD8+ T cell infiltration into the brain and increased ECM induction in PbAAma1OVA-infected Ifnar1-/- mice. However, eosinophil-depletion did not reduce the CD8+ T cell population in the spleen or reduce splenic CCL5 concentrations. Our study demonstrates that eosinophils impact CD8+ T cell migration and proliferation during PbAAma1OVA-infection in Ifnar1-/- mice and thereby are contributing to the protection from ECM.


Assuntos
Encéfalo/imunologia , Eosinófilos/fisiologia , Malária Cerebral/imunologia , Parasitemia/imunologia , Plasmodium berghei , Linfócitos T/imunologia , Animais , Animais não Endogâmicos , Anopheles/parasitologia , Antígenos de Protozoários/imunologia , Movimento Celular , Quimiocina CCL5/análise , Quimiocina CCL5/fisiologia , Citotoxicidade Imunológica , Feminino , Contagem de Leucócitos , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mosquitos Vetores/parasitologia , Organismos Geneticamente Modificados , Ovalbumina , Parasitemia/parasitologia , Fragmentos de Peptídeos , Plasmodium berghei/genética , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Receptores CCR5/fisiologia , Baço/química , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA