Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Anal Chem ; 96(24): 9780-9789, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848497

RESUMO

Dental caries is one of the most common diseases affecting more than 2 billion people's health worldwide. In a clinical setting, it is challenging to predict and proactively guard against dental cavities prior to receiving a confirmed diagnosis. Streptococcus mutans (S. mutans) in saliva has been recognized as the main causative bacterial agent that causes dental caries. High sensitivity, good selectivity, and a wide detection range are incredibly important factors to affect S. mutans detection in practical applications. In this study, we present a portable saliva biosensor designed for the early detection of S. mutans with the potential to predict the occurrence of dental cavities. The biosensor was fabricated using a S. mutans-specific DNA aptamer and S. mutans-imprinted polymers. Methylene blue was utilized as a redox probe in the sensor to generate current signals for analysis. When S. mutans enters complementarily S. mutans cavities, it blocks electron transfer between methylene blue and the electrode, resulting in decreases in the reduction current signal. The signal variations are associated with S. mutans concentrations that are useful for quantitative analysis. The linear detection range of S. mutans is 102-109 cfu mL-1, which covers the critical concentration of high caries risk. The biosensor exhibited excellent selectivity toward S. mutans in the presence of other common oral bacteria. The biosensor's wide detection range, excellent selectivity, and low limit of detection (2.6 cfu mL-1) are attributed to the synergistic effect of aptamer and S. mutans-imprinted polymers. The sensor demonstrates the potential to prevent dental caries.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Cárie Dentária , Saliva , Streptococcus mutans , Saliva/microbiologia , Saliva/química , Streptococcus mutans/isolamento & purificação , Técnicas Biossensoriais/instrumentação , Cárie Dentária/diagnóstico , Cárie Dentária/microbiologia , Aptâmeros de Nucleotídeos/química , Humanos , Azul de Metileno/química , Técnicas Eletroquímicas/instrumentação
2.
Anal Chem ; 95(42): 15786-15794, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37815480

RESUMO

Atherosclerosis conditions are often assessed in the clinic by measuring blood viscosity, blood flow, and blood lesion levels. In alignment with precision medicine, it is essential to develop convenient and noninvasive approaches for atherosclerosis diagnostics. Herein, an integrated electrochemical sensor was successfully demonstrated for simultaneously detecting cholesterol, transferrin, and K+ in sweat, all biomarker indicators of atherosclerosis. The sensing substrate was based on carbon quantum dots integrated within multiwalled carbon nanotubes, creating a hybrid framework with low electron transfer resistance and highly efficient electron transfer rate, yielding a highly electrochemical active platform for ultrasensitive detection of trace sweat biomarkers. To ensure specificity to corresponding targets, the sensing mechanisms were based on molecular recognition reactions of cholesterol and ß-cyclodextrin, transferrin and molecular cavities, and K+ and ion-selective permeation membrane. Moreover, the integrated nonenzymatic sensor exhibited excellent long-term stability. Furthermore, the practical utility of the sensor was successfully demonstrated by the simultaneous detection of three atherosclerosis biomarkers in sweat from volunteers who underwent predesigned daily activities. The sensor shows promise for convenient indexing of atherosclerosis conditions in a noninvasive way.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono , Humanos , Suor/química , Nanotubos de Carbono/análise , Biomarcadores/análise , Colesterol/análise , Transferrinas/análise , Técnicas Eletroquímicas
3.
Small ; 19(15): e2207134, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36627268

RESUMO

Human sweat comprises various electrolytes that are health status indicators. Conventional potentiometric electrolyte sensors require an electrical power source, which is expensive, bulky, and requires a complex architecture. Herein, this work demonstrates an electric nanogenerator fabricated using silicon nanowire (SiNW) arrays comprising modified carbon nanoparticles. The SiNW arrays platform is demonstrated as an effective self-powered sensor for sweat electrolyte analysis. It has been shown that an evaporation-induced water flow in nanochannels can yield an open-circuit voltage (Voc ) of 0.45 V and a short-circuit current of 10.2 µA at room temperature as a result of overlapped electric double layers. The electrolyte in the water flow results in a Voc decrease due to the charge shielding effect. The Voc is inversely proportional to the electrolyte concentration. The fabricated hydrovoltaic device shows the capability for sensing electrolytes in human sweat, which is useful in evaluating the hydration status of volunteers following intense physical exercise. The device depicts a novel response mechanism compared to conventional electrochemical sensors. Furthermore, the hydrovoltaic device shows a maximum output power of 1.42 µW, and as such has been successfully shown to drive various electronic devices including light-emitting diodes, a calculator, and an electronic timer.

4.
Sensors (Basel) ; 23(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36850915

RESUMO

A mechanically robust in-tube stainless steel microneedle solid phase microextraction (SPME) platform for dual electrochemical and chromatographic detection has been demonstrated. The SPME microneedle was fabricated by layer-by-layer (LbL) in-tube coating, consisting of carbon nanotube (CNT)/cellulose nanocrystal (CNC) film layered with an electrically conductive polyaniline (PANI) hydrogel layer (PANI@CNT/CNC SPME microneedle (MN)). The PANI@CNT/CNC SPME MN showed effective analysis of caffeine by GC-MS with an LOD of 26 mg/L and excellent precision across the dynamic range. Additionally, the PANI@CNT/CNC SPME MN demonstrated a 67% increase in sensitivity compared to a commercial SPME fiber, while being highly robust for repeated use without loss in performance. For electrochemical detection, the PANI@CNT/CNC SPME MN showed excellent performance for the detection of 3-caffeoylquinic acid (3-CQA). The dynamic range and limits of detection (LOD) for 3-CQA analysis were 75-448 mg/L and 11 mg/L, respectively. The PANI@CNT/CNC SPME MN was demonstrated to accurately determine the caffeine content and 3-CQA in tea samples and dark roast coffee, respectively. The PANI@CNT/CNC SPME MN was used for semiquantitative antioxidant determination and composition analysis in kiwi fruit using electrochemistry and SPME-coupled GC-MS, respectively.

5.
Anal Chem ; 94(2): 993-1002, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34958203

RESUMO

Flexible and wearable sensors have attracted much attention for their applications in health monitoring and the human-machine interaction. The most studied wearable sensors have been demonstrated for sensing a limited range of metabolites such as ions, glucose, uric acid, lactate, etc. Both sweat and urine contain numerous other physiologically relevant metabolites indicative of health and wellness. This work demonstrates the use of the wearable sensor for the detection of ß-hydroxybutyrate (HB) in sweat. HB is an important biomarker for diabetic ketoacidosis, a condition caused by the accumulation of ketone bodies in hyperglycemia or metabolic acidosis patients. Herein, we fabricated an integrated sensing system coupling an HB detection chamber with a serpentine electrode for sensing physiological signals such as pulse beat, vocal cord vibration, etc. The real-time HB detection was based on a ß-hydroxybutyrate dehydrogenase enzymatic reaction. The stability of the enzyme and the cofactor couple was achieved by cross-linking networks and a redox mediator, thereby achieving high selectivity and low detection limits to HB in urine and sweat. The dual-functional sensor was integrated with a signal processing circuitry for signal transduction, conditioning, processing, wireless transmission, and real-time convenient health monitoring display to a smartphone via home-developed software.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Ácido 3-Hidroxibutírico , Humanos , Processamento de Sinais Assistido por Computador , Smartphone , Suor
6.
Anal Chem ; 94(37): 12772-12780, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36066349

RESUMO

The future of personalized diagnostics and treatment of cardiovascular diseases lies in the use of portable sensors. Portable sensors can acquire biomarker information in biological fluids such as sweat, an approach that mitigates the shortcomings of conventional hospital-centered healthcare. Low sensitivity, selectivity, and specificity remain bottlenecks for the widespread use of portable sensors. Herein, we demonstrate a portable sensor that simultaneously detects Na+, ascorbic acid, and human neuropeptide Y in sweat, all useful biomarkers to index cardiovascular health. The portable sensor comprises a six-electrode system containing three working electrodes, two reference electrodes, and one counter electrode. The working electrodes were prepared by depositing sensing components on carbon quantum dot (CQD) electrodes. The sensing mechanisms were based on selective ion recognition, enzyme catalytic reaction, and immune response, which guarantees specificity to corresponding targets. The CQDs offer massive reactive sites and effectively reduce the interfacial impedance during the sensing reaction, thereby enhancing the three biomarkers' detection sensitivity. As evidence of portable sensor capability, we demonstrate herein its effective simultaneous detection of the three biomarkers in a real sweat from healthy volunteers during routine activities including exercise, extra ascorbic acid ingestion, and extra Na+ ingestion. As such, the sensor shows promise for real-time noninvasive personalized medical diagnostics and metabolic wellness management.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Ácido Ascórbico/análise , Biomarcadores/análise , Carbono/análise , Eletrodos , Humanos , Íons/análise , Neuropeptídeo Y/análise , Sódio/análise , Suor/química
7.
Mikrochim Acta ; 189(5): 206, 2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35501613

RESUMO

Concerns for agri-food safety and environmental management require development of simple to use and cost- and time-effective multiplex sensors for point-of-need (PON) chemical analytics by public end-user. Simultaneous detection of nitrates, phosphates, and pH is of importance in soil and water analysis, agriculture, and food quality assessment. This article demonstrates a suite of stainless steel microneedle electrochemical sensors for multiplexed measurement of pH, nitrate, and phosphate using faradaic capacitance derived from cyclic voltammetry as the mode of detection. The multi-target microneedle sensors were fabricated by layer-by-layer (LbL) assembly in a stainless steel hypodermic microneedle substrate. For nitrate sensing, the stainless steel was coated with carbon nanotube/cellulose nanocrystal (CNT)/CNC) decorated with silver nanoparticles (Ag). For pH measurement, the polyaniline (pANI) was coated onto the CNT/CNC@Ag film, while for phosphate detection, the CNT/CNC/Ag @pANI microneedle was further decorated with ammonium molybdenum tetrahydrate (AMT). The microelectrode platforms were characterized by FTIR, Raman, and microscopic techniques. The nitrate- and phosphate-based microneedle electrochemical sensors had excellent selectivity and sensitivity, with a determined limit of detection (LOD) of 0.008 mM and 0.007 mM, respectively. The pH microneedle sensor was responsive to pH in the linear range of 3-10. The three microneedle sensors yielded repeatable results, with a precision ranging from 4.0 to 7.5% RSD over the concentration ranges tested. The inexpensive (~ 1 $ CAD) microneedle sensors were successfully verified for use in quantification of nitrate, pH, and phosphate in brewed black coffee as a real sample. As such, the microneedle sensors are economical devices and show great promise as robust platforms for PON precision chemical analytics.


Assuntos
Nanopartículas Metálicas , Nitratos , Celulose , Técnicas Eletroquímicas/métodos , Concentração de Íons de Hidrogênio , Fosfatos , Prata/química , Aço Inoxidável
8.
Mikrochim Acta ; 189(5): 178, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35386009

RESUMO

An electrochemical aptasensor is reported for the sensitive and specific monitoring of 17ß-estradiol (E2) based on the modification of electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT)-graphene oxide (GO) coupled with Au@Pt nanocrystals (Au@Pt). With excellent conductivity, chemical stability and active sites, the PEDOT-GO nanocomposite film was firstly in situ polymerized on the glassy carbon electrode by cyclic voltammetry. Subsequently, one-step synthesized Au@Pt were decorated on the conductive polymer, providing a platform for immobilizing the aptamer and enhancing the detecting sensitivity. With the addition of E2, since the interfacial electron transfer process was retarded by the E2-aptamer complex, the differential pulse voltammetry signal decreased gradually. Under optimum conditions, the calibration curve of E2 exhibited a linear range between 0.1 pM and 1 nM, with a low detection limit (S/N = 3) of 0.08 pM. The developed aptasensor showed admiring selectivity, stability, and reproducibility. It was tested in human serum, lake water and tap water samples after low-cost and simple pretreatment. Consequently, the developed platform could provide a new design thought for ultrasensitive detection of E2 in clinical and environmental samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas , Aptâmeros de Nucleotídeos/química , Compostos Bicíclicos Heterocíclicos com Pontes , Técnicas Eletroquímicas , Estradiol , Grafite , Humanos , Limite de Detecção , Nanopartículas/química , Polímeros , Reprodutibilidade dos Testes , Água
9.
Sensors (Basel) ; 22(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36366189

RESUMO

A portable, molecularly imprinted polymer (MIP)-based microneedle (MN) sensor for the electrochemical detection of imidacloprid (IDP) has been demonstrated. The MN sensor was fabricated via layer-by-layer (LbL) in-tube coating using a carbon nanotube (CNT)/cellulose nanocrystal (CNC) composite, and an IDP-imprinted polyaniline layer co-polymerized with imidazole-functionalized CNCs (PANI-co-CNC-Im) as the biomimetic receptor film. The sensor, termed MIP@CNT/CNC MN, was analyzed using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) and showed excellent electrochemical performance for the detection of IDP. The CV detection range for IDP was 2.0-99 µM, with limits of detection (LOD) of 0.35 µM, while the DPV detection range was 0.20-92 µM with an LOD of 0.06 µM. Additionally, the MIP@CNT/CNC MN sensor showed excellent reusability and could be used up to nine times with a 1.4 % relative standard deviation (% RSD) between uses. Lastly, the MIP@CNT/CNC MN sensor successfully demonstrated the quantification of IDP in a honey sample.


Assuntos
Impressão Molecular , Nanotubos de Carbono , Praguicidas , Celulose , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Polímeros Molecularmente Impressos , Nanotubos de Carbono/química
10.
Angew Chem Int Ed Engl ; 60(33): 18014-18021, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-33559387

RESUMO

Exploration of new polymerization reactions is very intriguing in fundamental and practical research, which will advance reaction theories and produce various functional materials. Herein, we report a new polymerization method based on the reaction of CuI and arylacetylide, which generates linear polymers with high molecular weight and low polydispersity index of molecular weight. The Cu-arylacetylide polymerization exhibits different characteristics with traditional polymerizations such as mild reaction temperature, air atmosphere reaction, high molecular weight, fast polymerization rate, and imprecise molar ratio between monomers. The bond formation path and activation energy of each step was investigated by density functional theory calculations to understand the reaction mechanism. The poly(Cu-arylacetylide)s exhibit strong fluorescence emission and inherent semiconductive properties, which have been used to fabricate an electronic device for streptavidin sensing.

11.
Anal Bioanal Chem ; 412(26): 7063-7072, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32827071

RESUMO

This work outlines a simple fabricated microneedle electrode for sensitive and real sample monitoring of plant polyphenolics. The electrode was fabricated by layer-by-layer assembly (LBL) with nanocomposite of carbon nanotubes (CNT) and cellulose nanocrystals (CNC) as the first layer, followed by polyaniline (PANI), and finally, the 3-(glycidyloxypropyl)trimethoxysilane (GOPS) layer as the binding agent. The microneedle electrodes were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy, and Raman spectroscopy. The developed microneedle electrodes were successfully applied for the capacitive detection of gallic acid (GA) and chlorogenic acid (CA) as polyphenol model compounds. The microneedle electrode was also used to quantify polyphenols in orange juice. The electrochemical capacitance responses were linearly proportional to the concentrations of GA and CA in the range of 0.1-87.23 µg/mL for GA and 0.1-78.01 µg/mL for CA. The calculated detection limits (LOD) for GA and CA were found to be 0.29 ± 0.2 µg/mL and 0.34 ± 0.2 µg/mL respectively. As minimally invasive technology, microneedle electrodes were found to be promising for successful in situ screening of antioxidants in different fruit matrices. The microneedle electrodes were also applied to the depth profiling of antioxidant content in fruit samples. Graphical abstract.


Assuntos
Eletrodos , Agulhas , Polifenóis/análise , Aço Inoxidável/química , Limite de Detecção , Microscopia Eletrônica de Varredura/métodos , Análise Espectral/métodos
12.
Anal Bioanal Chem ; 412(8): 1825-1833, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32002581

RESUMO

A selective cortisol sensor based on molecularly imprinted poly(glycidylmethacrylate-co ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA)) has been demonstrated for detection of cortisol in human sweat. The non-enzymatic biomimetric flexible sweat sensor was fabricated inexpensively by layer by layer (LbL) assembly. The sensor layers comprised a stretchable polydimethylsiloxane (PDMS) base with carbon nanotubes-cellulose nanocrystals (CNC/CNT) conductive nanoporous nanofilms. The imprinted (MIP) poly(GMA-co-EGDMA) deposited on the CNC/CNT was the cortisol biomimetric receptor. Rapid in analyte response (3 min), the cortisol MIP sensor demonstrated excellent performance. The sensor has a limit of detection (LOD) of 2.0 ng/mL ± 0.4 ng/mL, dynamic range of 10-66 ng/mL, and a sensor reproducibility of 2.6% relative standard deviation (RSD). The MIP sensor also had high cortisol specificity and was inherently blind to selected interfering species including glucose, epinephrine, ß-estradiol, and methoxyprogestrone. The MIP was four orders of magnitude more sensitive than its non-imprinted (NIP) counterpart. The MIP sensor remains stable over time, responding proportionately to doses of cortisol in human sweat. Graphical abstract.


Assuntos
Técnicas Eletroquímicas/instrumentação , Eletrodos , Hidrocortisona/análise , Impressão Molecular , Suor/química , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Dispositivos Eletrônicos Vestíveis
13.
Mol Pharm ; 14(8): 2624-2628, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28686454

RESUMO

Nanogels with a biomolecular coating (biocoating) were shown to be capable of triggered delivery of anticancer drug Doxorubicin. The biocoating was formed utilizing binding between glycogen and the tetra-functional lectin Concanavalin A, which can be triggered to disassemble (and release) upon exposure to glucose and changes in solution pH. We also show the nanogel's thermoresponsivity can be used to accelerate Doxorubicin release. Moreover, we showed that transferrin immobilized on the nanogel surface could accelerate nanogel uptake by cancer cells. In these experiments, we showed that Doxorubicin was able to be released to the nucleus of human liver cancer cell line (HepG2) within 3 h. Doxorubicin-loaded nanogels exhibit a strong growth inhibition ability toward HepG2. This investigation showcases how nanogel design and chemistry can be tuned to achieve useful biomedical applications.


Assuntos
Antineoplásicos/química , Concanavalina A/química , Portadores de Fármacos/química , Polietilenoglicóis/química , Polietilenoimina/química , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Nanogéis , Nanopartículas/química , Polímeros/química
15.
Talanta ; 259: 124531, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080073

RESUMO

This article demonstrates an array of inexpensive molecularly imprinted microneedle platforms for the multiplexed electrochemical detection of pH, epinephrine, dopamine, and lactate biomarkers in human sweat. The multiplexed sensors were fabricated via layer-by-layer (LbL) assembly on a polydimethylsiloxane (PDMS) microneedle platform coated with a conductive PDMS/carbon nanotube (CNT)/cellulose nanocrystal (CNC) composite (PDMS/CNT/CNC@PDMS). The pH sensor was comprised of a pH-responsive polyaniline (PANI)/CNT/CNC/silver nanoparticle (AgNP) composite layer. The epinephrine, dopamine, and lactate sensors consisted of an additional epinephrine, dopamine, or lactate-imprinted PANI-co-3-aminophenylboronic acid (PBA)/gold nanoparticle (AuNP) layer atop the PANI/CNT/CNC/AgNP composite layer. Each sensor rapidly (∼2 min) and selectively responded to their target analytes, with excellent precision between scans. The limits of detection (LOD) for the epinephrine, dopamine, and lactate sensors were 0.0007 ± 0.0002 µM, 2.11 ± 0.05 nM, and 0.07 ± 0.07 mM, respectively. The pH sensor accurately responded to a pH range of 4.25-10. The applicability of the sensor platforms were successfully verified through quantification of pH, epinephrine, dopamine, and lactate in a human sweat sample, showing promise for use as a wearable, point of need (PON) sensor for sweat analytics.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Humanos , Suor/química , Dopamina/análise , Ouro/química , Técnicas Eletroquímicas , Prata/análise , Celulose , Ácido Láctico/análise , Epinefrina/análise
16.
Anal Chim Acta ; 1278: 341714, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37709457

RESUMO

This study presents a novel approach to the detection of epinephrine, lactate, and cortisol biomarkers in human sweat using molecularly-imprinted polymers (MIP) embedded screen printed carbon electrode (SPCE) sensors. The epinephrine and lactate MIP SPCE sensors were fabricated by epinephrine or lactate-imprinted polyaniline co-polymerized with 3-aminophenylboronic acid and gold nanoparticles (PANI-co-PBA/AuNP) selective membrane on a commercial SPCE. The cortisol sensor was comprised of a cortisol-imprinted poly(glycidyl methacryate-co-ethylene glycol dimethacrylate) (poly (GMA-co-EGDMA)@AuNP selective membrane deposited on a SPCE. Both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used as modes of analysis for the MIP SPCE sensors. All sensors exhibited a rapid (∼1 min) and selective response to the epinephrine, lactate, and cortisol target analytes, with excellent precision between scans for both CV and DPV analysis modes. For CV, the LOD for epinephrine, lactate, and cortisol was 8.2 nM, 13 mM, and 0.042 µM, respectively. The LOD for DPV were 0.60 nM, 2.2 mM, and 0.025 µM for epinephrine, lactate, and cortisol, respectively. The MIP SPCE sensor platforms were further validated through the successful quantification of epinephrine, lactate, and cortisol in human sweat.


Assuntos
Ácido Láctico , Nanopartículas Metálicas , Humanos , Suor , Hidrocortisona , Ouro , Carbono , Eletrodos , Epinefrina
17.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447504

RESUMO

Hydrogen peroxide (H2O2) is a versatile and effective disinfectant against common pathogenic bacteria such as Escherichia coli (E. coli). Electrochemical H2O2 generation has been studied in the past, but a lack of studies exists on miniaturized electrochemical platforms for the on-demand synthesis of H2O2 for antibacterial applications. In this article, a chemically modified cotton textile platform capable of in situ H2O2 production is demonstrated for E. coli deactivation. The cotton textile was modified by layer-by-layer coating with conductive carbon nanotubes/cellulose nanocrystals (CNT/CNC) and a polymer of polyaniline (PANI) decorated with anthraquinone (AQ), designated as the AQ@PANI@CNT/CNC@textile antibacterial patch. The AQ@PANI@CNT/CNC@textile antibacterial textile patch H2O2 production capabilities were evaluated using both electrochemical and colorimetric methods. The AQ@PANI@CNT/CNC@textile antibacterial patch electrochemically produced H2O2 concentrations up to 209 ± 25 µM over a 40 min period and displayed a log reduction of 3.32 for E. coli over a period of 2 h. The AQ@PANI@CNT/CNC@textile antibacterial patch offers promise for use as a self-disinfecting pathogen control platform.

18.
Adv Mater ; 35(9): e2211159, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36563409

RESUMO

Recording brain neural signals and optogenetic neuromodulations open frontiers in decoding brain neural information and neurodegenerative disease therapeutics. Conventional implantable probes suffer from modulus mismatch with biological tissues and an irreconcilable tradeoff between transparency and electron conductivity. Herein, a strategy is proposed to address these tradeoffs, which generates conductive and transparent hydrogels with polypyrrole-decorated microgels as cross-linkers. The optical transparency of the electrodes can be attributed to the special structures that allow light waves to bypass the microgel particles and minimize their interaction. Demonstrated by probing the hippocampus of rat brains, the biomimetic electrode shows a prolonged capacity for simultaneous optogenetic neuromodulation and recording of brain neural signals. More importantly, an intriguing brain-machine interaction is realized, which involves signal input to the brain, brain neural signal generation, and controlling limb behaviors. This breakthrough work represents a significant scientific advancement toward decoding brain neural information and developing neurodegenerative disease therapies.


Assuntos
Doenças Neurodegenerativas , Polímeros , Ratos , Animais , Polímeros/química , Hidrogéis/química , Elétrons , Pirróis , Encéfalo
19.
Anal Methods ; 14(21): 2063-2071, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35543096

RESUMO

Aflatoxin B1 (AFB1) has been identified as one of the most potent naturally occurring carcinogens with high toxicity. The maximum permissible levels of total aflatoxin contamination in food products are limited to 10-15 µg kg-1, as established by the Codex Alimentarius Commission. The widespread occurrence of AFB1 in the food chain identifies them as significant agricultural contaminants of global concern. We herewith demonstrate a molecularly imprinted polymer (MIP)-enabled stainless steel hypodermic needle sensor for sensitive electrochemical detection of AFB1. The stainless-steel hypodermic needle sensor was fabricated using a layer by layer (LbL) film coating comprising multiwalled carbon nanotubes (MWCNTs), cellulose nanocrystals (CNC), and an AFB1 imprinted polyaniline (PANI) biomimetic receptor film. The PANI@MIP/CNC-CNT hypodermic needlesensor showed excellent electrochemical capacitance response (∼10 min) to AFB1 with a linear range of 0-25 nM and a limit of detection (LOD) of 3 nM. Demonstrating good reusability, a single PANI@MIP/CNC-CNT hypodermic needle AFB1 sensor could be reused up to 7 times with a 2.8% relative standard deviation (% RSD) in the sensor's capacitive response. The PANI@MIP/CNC-CNT hypodermic needle sensor was effective in the detection of AFB1 spiked in milk.


Assuntos
Aflatoxina B1 , Nanotubos de Carbono , Aflatoxina B1/análise , Celulose , Polímeros Molecularmente Impressos , Agulhas , Aço Inoxidável
20.
Biosensors (Basel) ; 12(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36354510

RESUMO

This work presents a multipurpose and multilayered stainless steel microneedle sensor for the in situ redox potential monitoring in food and drink samples, termed MN redox sensor. The MN redox sensor was fabricated by layer-by-layer (LbL) approach. The in-tube multilayer coating comprised carbon nanotubes (CNTs)/cellulose nanocrystals (CNCs) as the first layer, polyaniline (PANI) as the second layer, and the ferrocyanide redox couple as the third layer. Using cyclic voltammetry (CV) as a transduction method, the MN redox sensor showed facile electron transfer for probing both electrical capacitance and redox potential, useful for both analyte specific and bulk quantification of redox species in various food and drink samples. The bulk redox species were quantified based on the anodic/cathodic redox peak shifts (Ea/Ec) on the voltammograms resulting from the presence of redox-active species. The MN redox sensor was applied to detect selected redox species including ascorbic acid, H2O2, and putrescine, with capacitive limits of detection (LOD) of 49.9, 17.8, and 263 ng/mL for each species, respectively. For the bulk determination of redox species, the MN redox sensor displayed LOD of 5.27 × 103, 55.4, and 25.8 ng/mL in ascorbic acid, H2O2, and putrescine equivalents, respectively. The sensor exhibited reproducibility of ~ 1.8% relative standard deviation (%RSD). The MN redox sensor was successfully employed for the detection of fish spoilage and antioxidant quantification in king mushroom and brewed coffee samples, thereby justifying its potential for food quality and food safety applications. Lastly, the portability, reusability, rapid sampling time, and capability of in situ analysis of food and drink samples makes it amenable for real-time sensing applications.


Assuntos
Nanotubos de Carbono , Animais , Nanotubos de Carbono/química , Técnicas Eletroquímicas/métodos , Análise de Alimentos , Peróxido de Hidrogênio , Putrescina , Reprodutibilidade dos Testes , Ácido Ascórbico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA