RESUMO
Autism spectrum disorder (ASD) is a complex developmental syndrome of unknown etiology. Recent studies employing exome- and genome-wide sequencing have identified nine high-confidence ASD (hcASD) genes. Working from the hypothesis that ASD-associated mutations in these biologically pleiotropic genes will disrupt intersecting developmental processes to contribute to a common phenotype, we have attempted to identify time periods, brain regions, and cell types in which these genes converge. We have constructed coexpression networks based on the hcASD "seed" genes, leveraging a rich expression data set encompassing multiple human brain regions across human development and into adulthood. By assessing enrichment of an independent set of probable ASD (pASD) genes, derived from the same sequencing studies, we demonstrate a key point of convergence in midfetal layer 5/6 cortical projection neurons. This approach informs when, where, and in what cell types mutations in these specific genes may be productively studied to clarify ASD pathophysiology.
Assuntos
Encéfalo/metabolismo , Transtornos Globais do Desenvolvimento Infantil/genética , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Transtornos Globais do Desenvolvimento Infantil/patologia , Exoma , Feminino , Feto/metabolismo , Feto/patologia , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Mutação , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Análise de Sequência de DNARESUMO
Analysis of de novo mutations (DNMs) from sequencing data of nuclear families has identified risk genes for many complex diseases, including multiple neurodevelopmental and psychiatric disorders. Most of these efforts have focused on mutations in protein-coding sequences. Evidence from genome-wide association studies (GWASs) strongly suggests that variants important to human diseases often lie in non-coding regions. Extending DNM-based approaches to non-coding sequences is challenging, however, because the functional significance of non-coding mutations is difficult to predict. We propose a statistical framework for analyzing DNMs from whole-genome sequencing (WGS) data. This method, TADA-Annotations (TADA-A), is a major advance of the TADA method we developed earlier for DNM analysis in coding regions. TADA-A is able to incorporate many functional annotations such as conservation and enhancer marks, to learn from data which annotations are informative of pathogenic mutations, and to combine both coding and non-coding mutations at the gene level to detect risk genes. It also supports meta-analysis of multiple DNM studies, while adjusting for study-specific technical effects. We applied TADA-A to WGS data of â¼300 autism-affected family trios across five studies and discovered several autism risk genes. The software is freely available for all research uses.
Assuntos
Mapeamento Cromossômico , Predisposição Genética para Doença , Mutação/genética , Estatística como Assunto , Sequenciamento Completo do Genoma , Transtorno Autístico/genética , Calibragem , Elementos Facilitadores Genéticos/genética , Humanos , Anotação de Sequência Molecular , Taxa de Mutação , Splicing de RNA/genética , Fatores de Risco , Sequenciamento do ExomaRESUMO
The human malaria parasite, Plasmodium falciparum, modifies the red blood cells (RBCs) that it infects by exporting proteins to the host cell. One key virulence protein, P. falciparum Erythrocyte Membrane Protein-1 (PfEMP1), is trafficked to the surface of the infected RBC, where it mediates adhesion to the vascular endothelium. We have investigated the organization and development of the exomembrane system that is used for PfEMP1 trafficking. Maurer's cleft cisternae are formed early after invasion and proteins are delivered to these (initially mobile) structures in a temporally staggered and spatially segregated manner. Membrane-Associated Histidine-Rich Protein-2 (MAHRP2)-containing tether-like structures are generated as early as 4 h post invasion and become attached to Maurer's clefts. The tether/Maurer's cleft complex docks onto the RBC membrane at ~20 h post invasion via a process that is not affected by cytochalasin D treatment. We have examined the trafficking of a GFP chimera of PfEMP1 expressed in transfected parasites. PfEMP1B-GFP accumulates near the parasite surface, within membranous structures exhibiting a defined ultrastructure, before being transferred to pre-formed mobile Maurer's clefts. Endogenous PfEMP1 and PfEMP1B-GFP are associated with Electron-Dense Vesicles that may be responsible for trafficking PfEMP1 from the Maurer's clefts to the RBC membrane.
Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum/patogenicidade , Transporte Proteico/fisiologia , Proteínas de Protozoários/fisiologia , Células Cultivadas , Membrana Eritrocítica/parasitologia , Membrana Eritrocítica/fisiologia , Eritrócitos/patologia , Proteínas de Fluorescência Verde , Interações Hospedeiro-Parasita/fisiologia , Humanos , Técnicas In Vitro , Plasmodium falciparum/fisiologiaRESUMO
Disruptive variants in the chromodomain helicase CHD8, which acts as a transcriptional regulator during neurodevelopment, are strongly associated with risk for autism spectrum disorder (ASD). Loss of CHD8 function is hypothesized to perturb gene regulatory networks in the developing brain, thereby contributing to ASD etiology. However, insight into the cell type-specific transcriptional effects of CHD8 loss of function remains limited. We used single-cell and single-nucleus RNA-sequencing to globally profile gene expression and identify dysregulated genes in the embryonic and juvenile wild type and Chd8 +/- mouse cortex, respectively. Chd8 and other ASD risk-associated genes showed a convergent expression trajectory that was largely conserved between the mouse and human developing cortex, increasing from the progenitor zones to the cortical plate. Genes associated with risk for neurodevelopmental disorders and genes involved in neuron projection development, chromatin remodeling, signaling, and migration were dysregulated in Chd8 +/- embryonic day (E) 12.5 radial glia. Genes implicated in synaptic organization and activity were dysregulated in Chd8 +/- postnatal day (P) 25 deep- and upper-layer excitatory cortical neurons, suggesting a delay in synaptic maturation or impaired synaptogenesis due to CHD8 loss of function. Our findings reveal a complex pattern of transcriptional dysregulation in Chd8 +/- developing cortex, potentially with distinct biological impacts on progenitors and maturing neurons in the excitatory neuronal lineage.
RESUMO
Importance: Stress and viral illness during pregnancy are associated with neurodevelopmental conditions in offspring. Autism screening positivity for children born during the pandemic remains unknown. Objective: To examine associations between prenatal exposure to the pandemic milieu and maternal SARS-CoV-2 infection with rates of positive Modified Checklist for Autism in Toddlers, Revised (M-CHAT-R) screenings. Design, Setting, and Participants: Data for this cohort study were drawn from the COVID-19 Mother Baby Outcomes (COMBO) Initiative. M-CHAT-R scores obtained from children aged 16 to 30 months during routine clinical care at Columbia University Irving Medical Center in New York City were abstracted from electronic health records (EHRs) for children born between January 2018 and September 2021 (COMBO-EHR cohort). Separately, the M-CHAT-R was administered at 18 months for children born between February 2020 and September 2021 through a prospective longitudinal study (COMBO-RSCH cohort). Prenatal pandemic exposure (birth after March 1, 2020) and maternal SARS-CoV-2 status during pregnancy was determined through EHRs. Data were analyzed from March 2022 to June 2024. Exposures: Prenatal exposures to the pandemic milieu and maternal SARS-CoV-2 infection. Main Outcomes and Measures: The primary outcome was rate of positive M-CHAT-R screenings. For all primary analyses, unadjusted χ2 tests and adjusted logistic regression models were performed. Results: The COMBO-EHR cohort included 1664 children (442 born before the pandemic and 1222 born during the pandemic; 997 SARS-CoV-2 unexposed, 130 SARS-CoV-2 exposed, and 95 with unknown SARS-CoV-2 exposure status), of whom 266 (16.0%) were Black, 991 (59.6%) were Hispanic, 400 (24.0%) were White, 1245 (74.8%) were insured through Medicaid, 880 (52.9%) were male, and 204 (12.3%) were born prematurely. The COMBO-RSCH cohort included 385 children (74 born before the pandemic and 311 born during the pandemic; 201 SARS-CoV-2 unexposed, 101 SARS-CoV-2 exposed, and 9 with unknown SARS-CoV-2 exposure status), of whom 39 (10.1%) were Black, 168 (43.6%) were Hispanic, 157 (40.8%) were White, 161 (41.8%) were insured through Medicaid, 222 (57.7%) were male, and 38 (9.9%) were born prematurely. Prenatal pandemic exposure was not associated with a higher positive M-CHAT-R screening rate in either the COMBO-EHR or COMBO-RSCH cohort. Prenatal exposure to maternal SARS-CoV-2 infection was associated with a lower rate of M-CHAT-R positivity in the COMBO-EHR cohort (12.3% [16 children] vs 24.0% [239 children]; adjusted odds ratio, 0.40; 95% CI, 0.22-0.68; P = .001), but no association was found in the COMBO-RSCH cohort (12.9% [13 children] vs 19.9% [40 children]; adjusted odds ratio, 0.51; 95% CI, 0.24-1.04; P = .07). Conclusions and Relevance: In this cohort study of 2 groups of children with prenatal pandemic exposure and/or exposure to maternal SARS-CoV-2 infection, neither exposure was associated with greater M-CHAT-R positivity.
Assuntos
Transtorno Autístico , COVID-19 , Efeitos Tardios da Exposição Pré-Natal , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/diagnóstico , Feminino , Gravidez , Masculino , Pré-Escolar , Lactente , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Transtorno Autístico/epidemiologia , Transtorno Autístico/diagnóstico , Cidade de Nova Iorque/epidemiologia , Pandemias , Complicações Infecciosas na Gravidez/epidemiologia , Complicações Infecciosas na Gravidez/diagnóstico , Programas de Rastreamento/métodos , Estudos Prospectivos , Adulto , Estudos Longitudinais , Estudos de CoortesRESUMO
LAY ABSTRACT: Children, adolescents, and adults with autism spectrum disorder and intellectual disability experience high rates of co-occurring psychiatric conditions throughout their lifetime. However, there is a shortage of psychiatrists to treat these populations. We evaluated how much education psychiatrists-in-training receive on how to care for individuals with autism spectrum disorder/intellectual disability. We found that in many psychiatry programs, residents receive limited training experiences in autism spectrum disorder/intellectual disability involving lectures and patient contact and that psychiatry program directors would benefit from more resources to strengthen education in autism spectrum disorder/intellectual disability.
Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Psiquiatria , Adulto , Criança , Adolescente , Humanos , Transtorno do Espectro Autista/terapia , Deficiência Intelectual/terapia , Psiquiatria/educação , EscolaridadeRESUMO
Importance: Associations between prenatal SARS-CoV-2 exposure and neurodevelopmental outcomes have substantial public health relevance. A previous study found no association between prenatal SARS-CoV-2 infection and parent-reported infant neurodevelopmental outcomes, but standardized observational assessments are needed to confirm this finding. Objective: To assess whether mild or asymptomatic maternal SARS-CoV-2 infection vs no infection during pregnancy is associated with infant neurodevelopmental differences at ages 5 to 11 months. Design, Setting, and Participants: This cohort study included infants of mothers from a single-site prospective cross-sectional study (COVID-19 Mother Baby Outcomes [COMBO] Initiative) of mother-infant dyads and a multisite prospective cohort study (Epidemiology of Severe Acute Respiratory Syndrome Coronavirus 2 in Pregnancy and Infancy [ESPI]) of pregnant individuals. A subset of ESPI participants was subsequently enrolled in the ESPI COMBO substudy. Participants in the ongoing COMBO study were enrolled beginning on May 26, 2020; participants in the ESPI study were enrolled from May 7 to November 3, 2021; and participants in the ESPI COMBO substudy were enrolled from August 2020 to March 2021. For the current analysis, infant neurodevelopment was assessed between March 2021 and June 2022. A total of 407 infants born to 403 mothers were enrolled (204 from Columbia University Irving Medical Center in New York, New York; 167 from the University of Utah in Salt Lake City; and 36 from the University of Alabama in Birmingham). Mothers of unexposed infants were approached for participation based on similar infant gestational age at birth, date of birth, sex, and mode of delivery to exposed infants. Exposures: Maternal symptomatic or asymptomatic SARS-CoV-2 infection. Main Outcomes and Measures: Infant neurodevelopment was assessed using the Developmental Assessment of Young Children, second edition (DAYC-2), adapted for telehealth assessment. The primary outcome was age-adjusted standard scores on 5 DAYC-2 subdomains: cognitive, gross motor, fine motor, expressive language, and receptive language. Results: Among 403 mothers, the mean (SD) maternal age at delivery was 32.1 (5.4) years; most mothers were of White race (240 [59.6%]) and non-Hispanic ethnicity (253 [62.8%]). Among 407 infants, 367 (90.2%) were born full term and 212 (52.1%) were male. Overall, 258 infants (63.4%) had no documented prenatal exposure to SARS-CoV-2 infection, 112 (27.5%) had confirmed prenatal exposure, and 37 (9.1%) had exposure before pregnancy or at an indeterminate time. In adjusted models, maternal SARS-CoV-2 infection during pregnancy was not associated with differences in cognitive (ß = 0.31; 95% CI, -2.97 to 3.58), gross motor (ß = 0.82; 95% CI, -1.34 to 2.99), fine motor (ß = 0.36; 95% CI, -0.74 to 1.47), expressive language (ß = -1.00; 95% CI, -4.02 to 2.02), or receptive language (ß = 0.45; 95% CI, -2.15 to 3.04) DAYC-2 subdomain scores. Trimester of exposure and maternal symptom status were not associated with DAYC-2 subdomain scores. Conclusions and Relevance: In this study, results of a novel telehealth-adapted observational neurodevelopmental assessment extended a previous finding of no association between prenatal exposure to maternal SARS-CoV-2 infection and infant neurodevelopment. Given the widespread and continued high prevalence of COVID-19, these data offer information that may be helpful for pregnant individuals who experience asymptomatic or mild SARS-CoV-2 infections.
Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Efeitos Tardios da Exposição Pré-Natal , Recém-Nascido , Criança , Feminino , Gravidez , Humanos , Lactente , Masculino , Pré-Escolar , Adulto , Estudos de Coortes , Estudos Prospectivos , COVID-19/epidemiologia , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Estudos Transversais , Complicações Infecciosas na Gravidez/epidemiologia , SARS-CoV-2RESUMO
In 2020, a nationwide shift to telepsychiatry occurred in the wake of the Coronavirus Disease 2019 (COVID-19) pandemic and lockdowns. To assess the rates of telepsychiatry appointment attendance pre- and post-lockdown, we conducted a national, multi-site survey of appointments in 2020 compared to a similar time period in 2019, at outpatient child psychiatry clinics that specialize in the treatment of patients with Autism Spectrum Disorder (ASD) and/or Developmental Disabilities (DD). ASD/DD clinics rapidly shifted to telepsychiatry, returning to pre-pandemic appointment numbers and completion rates within months. We advocate for the continued funding of this care model, discuss the substantial benefits physicians, patients and families have found in using telepsychiatry, and suggest ways to improve future access for ASD/DD telepsychiatry.
Assuntos
Transtorno do Espectro Autista , COVID-19 , Psiquiatria , Telemedicina , Criança , Humanos , Pandemias , Transtorno do Espectro Autista/terapia , Deficiências do Desenvolvimento/terapia , Controle de Doenças TransmissíveisRESUMO
Importance: Associations between in utero exposure to maternal SARS-CoV-2 infection and neurodevelopment are speculated, but currently unknown. Objective: To examine the associations between maternal SARS-CoV-2 infection during pregnancy, being born during the COVID-19 pandemic regardless of maternal SARS-CoV-2 status, and neurodevelopment at age 6 months. Design, Setting, and Participants: A cohort of infants exposed to maternal SARS-CoV-2 infection during pregnancy and unexposed controls was enrolled in the COVID-19 Mother Baby Outcomes Initiative at Columbia University Irving Medical Center in New York City. All women who delivered at Columbia University Irving Medical Center with a SARS-CoV-2 infection during pregnancy were approached. Women with unexposed infants were approached based on similar gestational age at birth, date of birth, sex, and mode of delivery. Neurodevelopment was assessed using the Ages & Stages Questionnaire, 3rd Edition (ASQ-3) at age 6 months. A historical cohort of infants born before the pandemic who had completed the 6-month ASQ-3 were included in secondary analyses. Exposures: Maternal SARS-CoV-2 infection during pregnancy and birth during the COVID-19 pandemic. Main Outcomes and Measures: Outcomes were scores on the 5 ASQ-3 subdomains, with the hypothesis that maternal SARS-CoV-2 infection during pregnancy would be associated with decrements in social and motor development at age 6 months. Results: Of 1706 women approached, 596 enrolled; 385 women were invited to a 6-month assessment, of whom 272 (70.6%) completed the ASQ-3. Data were available for 255 infants enrolled in the COVID-19 Mother Baby Outcomes Initiative (114 in utero exposed, 141 unexposed to SARS-CoV-2; median maternal age at delivery, 32.0 [IQR, 19.0-45.0] years). Data were also available from a historical cohort of 62 infants born before the pandemic. In utero exposure to maternal SARS-CoV-2 infection was not associated with significant differences on any ASQ-3 subdomain, regardless of infection timing or severity. However, compared with the historical cohort, infants born during the pandemic had significantly lower scores on gross motor (mean difference, -5.63; 95% CI, -8.75 to -2.51; F1,267 = 12.63; P<.005), fine motor (mean difference, -6.61; 95% CI, -10.00 to -3.21; F1,267 = 14.71; P < .005), and personal-social (mean difference, -3.71; 95% CI, -6.61 to -0.82; F1,267 = 6.37; P<.05) subdomains in fully adjusted models. Conclusions and Relevance: In this study, birth during the pandemic, but not in utero exposure to maternal SARS-CoV-2 infection, was associated with differences in neurodevelopment at age 6 months. These early findings support the need for long-term monitoring of children born during the COVID-19 pandemic.
Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , COVID-19/epidemiologia , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Cidade de Nova Iorque/epidemiologia , Pandemias , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , SARS-CoV-2RESUMO
Transport of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) variants to the red blood cell (RBC) surface enables malarial parasite evasion of host immunity by modifying the antigenic and adhesive properties of infected RBCs. In this study, we applied the Bxb1 integrase system to integrate transgenes encoding truncated PfEMP1-GFP fusions into cytoadherent A4 parasites and characterize their surface transport requirements. Our studies revealed that the semi-conserved head structure of PfEMP1 proteins, in combination with the predicted transmembrane region and cytoplasmic tail, encodes sufficient information for RBC surface display. In contrast, miniPfEMP1 proteins with truncated head structures were exported to the RBC cytoplasm but were not detected at the RBC surface by flow cytometry or immuno-electron microscopy. We demonstrated the absence of a mechanistic barrier to having native and miniPfEMP1 proteins displayed simultaneously at the RBC surface. However, surface-exposed miniPfEMP1 proteins did not convey cytoadherence properties to their host cells, implicating potential steric considerations in host-receptor interactions or the need for multiple domains to mediate cell binding. This study establishes a new system to investigate PfEMP1 transport and demonstrates that the PfEMP1 semi-conserved head structure is under selection for protein transport, in addition to its known roles in adhesion.
Assuntos
Eritrócitos/parasitologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Membrana Celular/metabolismo , Sequência Conservada , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia Imunoeletrônica , Plasmodium falciparum/genética , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismoRESUMO
While neural networks are powerful approximators used to classify or embed data into lower dimensional spaces, they are often regarded as black boxes with uninterpretable features. Here we propose Graph Spectral Regularization for making hidden layers more interpretable without significantly impacting performance on the primary task. Taking inspiration from spatial organization and localization of neuron activations in biological networks, we use a graph Laplacian penalty to structure the activations within a layer. This penalty encourages activations to be smooth either on a predetermined graph or on a feature-space graph learned from the data via co-activations of a hidden layer of the neural network. We show numerous uses for this additional structure including cluster indication and visualization in biological and image data sets.
RESUMO
Importance: Autism spectrum disorder (ASD) is a highly prevalent disorder, and community psychiatrists are likely to treat many individuals with ASD during their clinical practice. This clinical case challenge describes a routine evaluation of irritability and self-injury in a preschool-aged child who meets the criteria for ASD. The case also illustrates the importance of known risk factors for ASD, such as chromosomal deletion and prematurity. This clinical neuroscience article seeks to educate the clinician of current avenues of research that can inform and may already affect clinical practice for this patient, while providing a preview of research that may yield biological treatments for ASD within the next decade. Observations: A diagnosis of ASD is defined behaviorally; therefore, many genetic and environmental risk factors, working singly or in concert, are linked to ASD. The prenatal period of brain development is particularly sensitive to risk factors such as gene mutation or drug exposure that affect brain development and circuitry formation. Currently, neuroimaging researchers can detect changes in brain connectivity of children with ASD as young as 6 months, followed by an atypical trajectory of brain development through preschool age and ongoing connectivity inefficiencies across the lifespan. Animal and cellular model systems have provided a means for defining the molecular and cellular changes associated with risk factors for ASD. The ability to connect specific treatments to particular subgroups of people with ASD is the defining hope of precision medicine initiatives. Conclusions and Relevance: The advent of next-generation sequencing technology, advanced imaging techniques, and cutting-edge molecular techniques for modeling ASD has allowed researchers to define ASD risk-related biological pathways and circuits that may, for the first time, unify the effects of disparate risk factors into common neurobiological mechanisms. The path from these mechanisms to biological treatments that improve the lives of individuals with autism remains unclear, but the cumulative output of multiple lines of research suggests that subtyping by genetic risk factors may be a particularly tractable way to capitalize on individual differences amenable to specific treatments.
Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiopatologia , Adolescente , Adulto , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/psicologia , Pesquisa Biomédica , Criança , Pré-Escolar , Estudos Transversais , Modelos Animais de Doenças , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença/genética , Humanos , Lactente , Recém-Nascido , Humor Irritável/fisiologia , Masculino , Rede Nervosa/fisiopatologia , Gravidez , Fatores de Risco , Comportamento Autodestrutivo/diagnóstico , Comportamento Autodestrutivo/genética , Comportamento Autodestrutivo/fisiopatologia , Comportamento Autodestrutivo/psicologia , Adulto JovemRESUMO
Silencing of gene transcription involves local chromatin modification achieved through the local recruitment of large multiprotein complexes containing histone deacetylase (HDAC) activity. The mammalian corepressors mSin3A and mSin3B have been shown to play a key role in this process by tethering HDACs 1 and 2 to promoter-bound transcription factors. Similar mechanisms appear to be operative in yeast, in which epistasis experiments have established that the mSin3 and HDAC orthologs (SIN3 and RPD3), along with a novel protein, SDS3, function in the same repressor pathway. Here, we report the identification of a component of the mSin3-HDAC complex that bears homology to yeast SDS3, physically associates with mSin3 proteins in vivo, represses transcription in a manner that is partially dependent on HDAC activity, and enables HDAC1 catalytic activity in vivo. That key physical and functional properties are also shared by yeast SDS3 underscores the central role of the Sin3-HDAC-Sds3 complex in eukaryotic cell biology, and the discovery of mSds3 in mammalian cells provides a new avenue for modulating the activity of this complex in human disease.
Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae , Células 3T3 , Sequência de Aminoácidos , Animais , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Dimerização , Histona Desacetilase 1 , Histona Desacetilases/química , Histona Desacetilases/genética , Técnicas In Vitro , Substâncias Macromoleculares , Camundongos , Dados de Sequência Molecular , Complexos Multiproteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Complexo Correpressor Histona Desacetilase e Sin3 , Transcrição Gênica , Técnicas do Sistema de Duplo-HíbridoRESUMO
Recent studies implicate chromatin modifiers in autism spectrum disorder (ASD) through the identification of recurrent de novo loss of function mutations in affected individuals. ASD risk genes are co-expressed in human midfetal cortex, suggesting that ASD risk genes converge in specific regulatory networks during neurodevelopment. To elucidate such networks, we identify genes targeted by CHD8, a chromodomain helicase strongly associated with ASD, in human midfetal brain, human neural stem cells (hNSCs) and embryonic mouse cortex. CHD8 targets are strongly enriched for other ASD risk genes in both human and mouse neurodevelopment, and converge in ASD-associated co-expression networks in human midfetal cortex. CHD8 knockdown in hNSCs results in dysregulation of ASD risk genes directly targeted by CHD8. Integration of CHD8-binding data into ASD risk models improves detection of risk genes. These results suggest loss of CHD8 contributes to ASD by perturbing an ancient gene regulatory network during human brain development.
Assuntos
Transtorno do Espectro Autista/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/genética , Modelos Neurológicos , Sistema Nervoso/embriologia , Fatores de Transcrição/metabolismo , Animais , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Sistema Nervoso/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes. METHODS: To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random field in which the graph structure is determined by gene co-expression and it combines these interrelationships with node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk. RESULTS: Using currently available genetic data and a specific developmental time period for gene co-expression, DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model. CONCLUSIONS: Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders to identify genes and subnetworks in those disorders.
Assuntos
Transtorno do Espectro Autista , Comportamento Autodestrutivo , Criança , Genoma Humano , Genômica , HumanosRESUMO
Questions surround the mechanism of mutually exclusive expression by which Plasmodium falciparum mediates activation and silencing of var genes. These encode PfEMP1 proteins, which function as cytoadherent and immunomodulatory molecules at the surface of parasitised erythrocytes. Current evidence suggests that promoter silencing by var introns might play a key role in var gene regulation. To evaluate the impact of cis-acting regulatory regions on var silencing, we generated P. falciparum lines in which luciferase was placed under the control of an UpsA var promoter. By utilising the Bxb1 integrase system, these reporter cassettes were targeted to a genomic region that was not in apposition to var subtelomeric domains. This eliminated possible effects from surrounding telomeric elements and removed the variability inherent in episomal systems. Studies with highly synchronised parasites revealed that the UpsA element possessed minimal activity in comparison with a heterologous (hrp3) promoter. This may result from the integrated UpsA promoter being largely silenced by the neighbouring cg6 promoter. Our analyses also revealed that the DownsA 3' untranslated region further decreased the luciferase activity from both cassettes, whereas the var A intron repressed the UpsA promoter specifically. By applying multivariate analysis over the entire cell cycle, we confirmed the significance of these cis-elements and found the parasite stage to be the major factor regulating UpsA-promoter activity. Additionally, we observed that the UpsA promoter was capable of nucleating reversible silencing that spread to a downstream promoter. We believe these studies are the first to analyse promoter activity of Group A var genes, which have been implicated in severe malaria, and support the model that var introns can further suppress var expression. These data also suggest an important suppressive role for the DownsA terminator. Our findings imply the existence of multiple levels of var gene regulation in addition to intrinsic promoter-dependent silencing.
Assuntos
Inativação Gênica/fisiologia , Malária/parasitologia , Plasmodium falciparum/genética , Regiões Promotoras Genéticas/genética , Proteínas de Protozoários/genética , Regiões 3' não Traduzidas/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , Íntrons/genética , Análise Multivariada , Plasmodium falciparum/metabolismo , Reação em Cadeia da PolimeraseRESUMO
Here we report an efficient, site-specific system of genetic integration into Plasmodium falciparum malaria parasite chromosomes. This is mediated by mycobacteriophage Bxb1 integrase, which catalyzes recombination between an incoming attP and a chromosomal attB site. We developed P. falciparum lines with the attB site integrated into the glutaredoxin-like cg6 gene. Transfection of these attB(+) lines with a dual-plasmid system, expressing a transgene on an attP-containing plasmid together with a drug resistance gene and the integrase on a separate plasmid, produced recombinant parasites within 2 to 4 weeks that were genetically uniform for single-copy plasmid integration. Integrase-mediated recombination resulted in proper targeting of parasite proteins to intra-erythrocytic compartments, including the apicoplast, a plastid-like organelle. Recombinant attB x attP parasites were genetically stable in the absence of drug and were phenotypically homogeneous. This system can be exploited for rapid genetic integration and complementation analyses at any stage of the P. falciparum life cycle, and it illustrates the utility of Bxb1-based integrative recombination for genetic studies of intracellular eukaryotic organisms.