Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 77(1): 180-188.e9, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31630969

RESUMO

The mitochondrial proteome is built mainly by import of nuclear-encoded precursors, which are targeted mostly by cleavable presequences. Presequence processing upon import is essential for proteostasis and survival, but the consequences of dysfunctional protein maturation are unknown. We find that impaired presequence processing causes accumulation of precursors inside mitochondria that form aggregates, which escape degradation and unexpectedly do not cause cell death. Instead, cells survive via activation of a mitochondrial unfolded protein response (mtUPR)-like pathway that is triggered very early after precursor accumulation. In contrast to classical stress pathways, this immediate response maintains mitochondrial protein import, membrane potential, and translation through translocation of the nuclear HMG-box transcription factor Rox1 to mitochondria. Rox1 binds mtDNA and performs a TFAM-like function pivotal for transcription and translation. Induction of early mtUPR provides a reversible stress model to mechanistically dissect the initial steps in mtUPR pathways with the stressTFAM Rox1 as the first line of defense.


Assuntos
Mitocôndrias/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Morte Celular/fisiologia , Núcleo Celular/metabolismo , DNA Mitocondrial/metabolismo , Potenciais da Membrana/fisiologia , Biossíntese de Proteínas/fisiologia , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/fisiologia
2.
Biol Proced Online ; 25(1): 26, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730545

RESUMO

BACKGROUND: Astrocytes have recently gained attention as key contributors to the pathogenesis of neurodegenerative disorders including Parkinson's disease. To investigate human astrocytes in vitro, numerous differentiation protocols have been developed. However, the properties of the resulting glia are inconsistent, which complicates the selection of an appropriate method for a given research question. Thus, we compared two approaches for the generation of iPSC-derived astrocytes. We phenotyped glia that were obtained employing a widely used long, serum-free ("LSF") method against an in-house established short, serum-containing ("SSC") protocol which allows for the generation of astrocytes and midbrain neurons from the same precursor cells. RESULTS: We employed high-content confocal imaging and RNA sequencing to characterize the cultures. The astrocytes generated with the LSF or SSC protocols differed considerably in their properties: while the former cells were more labor-intense in their generation (5 vs 2 months), they were also more mature. This notion was strengthened by data resulting from cell type deconvolution analysis that was applied to bulk transcriptomes from the cultures to assess their similarity with human postmortem astrocytes. CONCLUSIONS: Overall, our analyses highlight the need to consider the advantages and disadvantages of a given differentiation protocol, when designing functional or drug discovery studies involving iPSC-derived astrocytes.

3.
Mov Disord ; 37(7): 1405-1415, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460111

RESUMO

BACKGROUND: Mutations in the E3 ubiquitin ligase parkin cause autosomal recessive Parkinson's disease (PD). Together with PTEN-induced kinase 1 (PINK1), parkin regulates the clearance of dysfunctional mitochondria. New mitochondria are generated through an interplay of nuclear- and mitochondrial-encoded proteins, and recent studies suggest that parkin influences this process at both levels. In addition, parkin was shown to prevent mitochondrial membrane permeability, impeding mitochondrial DNA (mtDNA) escape and subsequent neuroinflammation. However, parkin's regulatory roles independent of mitophagy are not well described in patient-derived neurons. OBJECTIVES: We sought to investigate parkin's role in preventing neuronal mtDNA dyshomeostasis, release, and glial activation at the endogenous level. METHODS: We generated induced pluripotent stem cell (iPSC)-derived midbrain neurons from PD patients with parkin (PRKN) mutations and healthy controls. Live-cell imaging, proteomic, mtDNA integrity, and gene expression analyses were employed to investigate mitochondrial biogenesis and genome maintenance. To assess neuroinflammation, we performed single-nuclei RNA sequencing in postmortem tissue and quantified interleukin expression in mtDNA/lipopolysaccharides (LPS)-treated iPSC-derived neuron-microglia co-cultures. RESULTS: Neurons from patients with PRKN mutations revealed deficits in the mitochondrial biogenesis pathway, resulting in mtDNA dyshomeostasis. Moreover, the energy sensor sirtuin 1, which controls mitochondrial biogenesis and clearance, was downregulated in parkin-deficient cells. Linking mtDNA disintegration to neuroinflammation, in postmortem midbrain with PRKN mutations, we confirmed mtDNA dyshomeostasis and detected an upregulation of microglia overexpressing proinflammatory cytokines. Finally, parkin-deficient neuron-microglia co-cultures elicited an enhanced immune response when exposed to mtDNA/LPS. CONCLUSIONS: Our findings suggest that parkin coregulates mitophagy, mitochondrial biogenesis, and mtDNA maintenance pathways, thereby protecting midbrain neurons from neuroinflammation and degeneration. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
DNA Mitocondrial , Doença de Parkinson , Ubiquitina-Proteína Ligases , DNA Mitocondrial/genética , Humanos , Inflamação/genética , Lipopolissacarídeos/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteômica , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
4.
Cell Tissue Res ; 367(1): 73-81, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27595151

RESUMO

Mitochondria play a key role in several metabolic and cell biological pathways and have attracted increasing attention due to their implication in life-span, ageing and human diseases. Mitochondrial proteases have a special role in these multiple biological functions, as they are involved in the regulation of various processes, e.g., mitochondrial protein biogenesis and quality control, mitochondrial dynamics, mitophagy and programmed cell death. The mitochondrial presequence processing machinery serves the particular purpose of maturing the majority of incoming precursor proteins by presequence cleavage, to ensure a stable mature protein by trimming of intermediate N-termini and to remove free toxic targeting peptides.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Doença , Humanos , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo
5.
Genetics ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073444

RESUMO

Pentatricopeptide (PPR) proteins bind RNA and are present in mitochondria and chloroplasts of Eukaryota. In fungi they are responsible for controlling mitochondrial genome expression, mainly on the posttranscriptional level. Candida albicans is a human opportunistic pathogen with a facultative anaerobic metabolism which, unlike the model yeast S. cerevisiae, possesses mitochondrially encoded respiratory Complex I (CI) subunits and does not tolerate loss of mtDNA. We characterized the function of 4 PPR proteins of C. albicans that lack orthologs in S. cerevisiae, and found that they are required for the expression of mitochondrially-encoded CI subunits. We demonstrated that these proteins localize to mitochondria and are essential to maintain the respiratory capacity of cells. Deletion of genes encoding these PPR proteins results in changes in steady state levels of mitochondrial RNAs and proteins. We demonstrated that C. albicans cells lacking CaPpr4, CaPpr11, and CaPpr13 proteins show no CI assembly, whereas the lack of CaPpr7p results in a decreased CI activity. CaPpr13p is required to maintain the bicistronic NAD4L-NAD5 mRNA, whereas the other three PPR proteins are likely involved in translation-related assembly of mitochondrially encoded CI subunits. In addition, we show that CaAep3p which is an ortholog of ScAep3p, performs the evolutionary conserved function of controlling expression of the ATP8-ATP6 mRNA. We also show that C. albicans cells lacking PPR proteins express a higher level of the inducible alternative oxidase (AOX2) which likely rescues respiratory defects and compensates for oxidative stress.

6.
Front Endocrinol (Lausanne) ; 12: 668517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025580

RESUMO

Converging evidence made clear that declining brain energetics contribute to aging and are implicated in the initiation and progression of neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Indeed, both pathologies involve instances of hypometabolism of glucose and oxygen in the brain causing mitochondrial dysfunction, energetic failure and oxidative stress. Importantly, recent evidence suggests that astrocytes, which play a key role in supporting neuronal function and metabolism, might contribute to the development of neurodegenerative diseases. Therefore, exploring how the neuro-supportive role of astrocytes may be impaired in the context of these disorders has great therapeutic potential. In the following, we will discuss some of the so far identified features underlining the astrocyte-neuron metabolic crosstalk. Thereby, special focus will be given to the role of mitochondria. Furthermore, we will report on recent advancements concerning iPSC-derived models used to unravel the metabolic contribution of astrocytes to neuronal demise. Finally, we discuss how mitochondrial dysfunction in astrocytes could contribute to inflammatory signaling in neurodegenerative diseases.


Assuntos
Envelhecimento , Astrócitos/patologia , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Estresse Oxidativo , Animais , Astrócitos/metabolismo , Humanos , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo
7.
Front Cell Dev Biol ; 9: 740758, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34805149

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease with unknown cause in the majority of patients, who are therefore considered "idiopathic" (IPD). PD predominantly affects dopaminergic neurons in the substantia nigra pars compacta (SNpc), yet the pathology is not limited to this cell type. Advancing age is considered the main risk factor for the development of IPD and greatly influences the function of microglia, the immune cells of the brain. With increasing age, microglia become dysfunctional and release pro-inflammatory factors into the extracellular space, which promote neuronal cell death. Accordingly, neuroinflammation has also been described as a feature of PD. So far, studies exploring inflammatory pathways in IPD patient samples have primarily focused on blood-derived immune cells or brain sections, but rarely investigated patient microglia in vitro. Accordingly, we decided to explore the contribution of microglia to IPD in a comparative manner using, both, iPSC-derived cultures and postmortem tissue. Our meta-analysis of published RNAseq datasets indicated an upregulation of IL10 and IL1B in nigral tissue from IPD patients. We observed increased expression levels of these cytokines in microglia compared to neurons using our single-cell midbrain atlas. Moreover, IL10 and IL1B were upregulated in IPD compared to control microglia. Next, to validate these findings in vitro, we generated IPD patient microglia from iPSCs using an established differentiation protocol. IPD microglia were more readily primed as indicated by elevated IL1B and IL10 gene expression and higher mRNA and protein levels of NLRP3 after LPS treatment. In addition, IPD microglia had higher phagocytic capacity under basal conditions-a phenotype that was further exacerbated upon stimulation with LPS, suggesting an aberrant microglial function. Our results demonstrate the significance of microglia as the key player in the neuroinflammation process in IPD. While our study highlights the importance of microglia-mediated inflammatory signaling in IPD, further investigations will be needed to explore particular disease mechanisms in these cells.

8.
Genome Med ; 8(1): 106, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27799064

RESUMO

BACKGROUND: Mitochondrial presequence proteases perform fundamental functions as they process about 70 % of all mitochondrial preproteins that are encoded in the nucleus and imported posttranslationally. The mitochondrial intermediate presequence protease MIP/Oct1, which carries out precursor processing, has not yet been established to have a role in human disease. METHODS: Whole exome sequencing was performed on four unrelated probands with left ventricular non-compaction (LVNC), developmental delay (DD), seizures, and severe hypotonia. Proposed pathogenic variants were confirmed by Sanger sequencing or array comparative genomic hybridization. Functional analysis of the identified MIP variants was performed using the model organism Saccharomyces cerevisiae as the protein and its functions are highly conserved from yeast to human. RESULTS: Biallelic single nucleotide variants (SNVs) or copy number variants (CNVs) in MIPEP, which encodes MIP, were present in all four probands, three of whom had infantile/childhood death. Two patients had compound heterozygous SNVs (p.L582R/p.L71Q and p.E602*/p.L306F) and one patient from a consanguineous family had a homozygous SNV (p.K343E). The fourth patient, identified through the GeneMatcher tool, a part of the Matchmaker Exchange Project, was found to have inherited a paternal SNV (p.H512D) and a maternal CNV (1.4-Mb deletion of 13q12.12) that includes MIPEP. All amino acids affected in the patients' missense variants are highly conserved from yeast to human and therefore S. cerevisiae was employed for functional analysis (for p.L71Q, p.L306F, and p.K343E). The mutations p.L339F (human p.L306F) and p.K376E (human p.K343E) resulted in a severe decrease of Oct1 protease activity and accumulation of non-processed Oct1 substrates and consequently impaired viability under respiratory growth conditions. The p.L83Q (human p.L71Q) failed to localize to the mitochondria. CONCLUSIONS: Our findings reveal for the first time the role of the mitochondrial intermediate peptidase in human disease. Loss of MIP function results in a syndrome which consists of LVNC, DD, seizures, hypotonia, and cataracts. Our approach highlights the power of data exchange and the importance of an interrelationship between clinical and research efforts for disease gene discovery.


Assuntos
Genes Recessivos/genética , Cardiopatias Congênitas/etiologia , Metaloendopeptidases/genética , Hipotonia Muscular/etiologia , Morte Súbita do Lactente/etiologia , Adulto , Sequência de Aminoácidos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo , Homologia de Sequência de Aminoácidos , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA