Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 22(3): 919-930, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36700487

RESUMO

Glycosylphosphatidylinositol (GPI) anchorage of cell surface proteins to the membrane is biologically important and ubiquitous in eukaryotes. However, GPIs do not contain long enough lipids to span the entire membrane bilayer. To transduce binding signals, GPIs must interact with other membrane components, but such interactions are difficult to define. Here, a new method was developed to explore GPI-interacting membrane proteins in live cell with a bifunctional analogue of the glucosaminylphosphatidylinositol motif conserved in all GPIs as a probe. This probe contained a diazirine functionality in the lipid and an alkynyl group on the glucosamine residue to respectively facilitate the cross-linkage of GPI-binding membrane proteins with the probe upon photoactivation and then the installation of biotin to the cross-linked proteins via a click reaction for affinity-based protein isolation and analysis. Profiling the proteins pulled down from the Hela cells revealed 94 unique and 18 overrepresented proteins compared to the control, and most of them are membrane proteins and many are GPI-related. The results have proved not only the concept of using the new bifunctional GPI probe to investigate GPI-binding membrane proteins but also the important role of inositol in the biological functions of GPI anchors and GPI-anchored proteins.


Assuntos
Glicosilfosfatidilinositóis , Proteínas de Membrana , Humanos , Glicosilfosfatidilinositóis/análise , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/metabolismo , Células HeLa , Membrana Celular/química , Proteínas de Membrana/metabolismo
2.
Chemistry ; 29(17): e202203457, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36445784

RESUMO

A new, bifunctional glycosylphosphatidylinositol (GPI) derivative containing the highly conserved core structure of all natural GPI anchors with a photoactivable diazirine in the lipid chain and clickable alkynes in the glycan was synthesized by a convergent [3+2] glycosylation strategy with late stage protecting group manipulation and regioselective phosphorylation. The challenges of this synthesis were due to the presence of several distinctive functional groups in the synthetic target, which complicated the protection tactics, in addition to the inherent difficulties associated with GPI synthesis. This bifunctional GPI derivative can cross-react with molecules in proximity upon photoactivation and be subsequently labeled with other molecular tags via click reaction. Therefore, it should be a valuable probe for biological studies of GPIs, such as analysis of GPI-interacting membrane proteins, and gaining insights into their functional mechanisms.


Assuntos
Glicosilfosfatidilinositóis , Proteínas de Membrana , Glicosilfosfatidilinositóis/química , Proteínas de Membrana/metabolismo , Glicosilação , Fosforilação , Biologia
3.
J Org Chem ; 87(14): 9419-9425, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35766889

RESUMO

A bifunctional derivative of the core structure of glycosylphosphatidylinositol (GPI) anchors having a clickable alkynyl group and a photoreactive diazirine group attached to the GPI glucosamine and lipid moieties, respectively, was synthesized from myo-inositol, d-glucosamine, and (R)-1,2-O-acetonized glycerol. The target molecule should be useful for the investigation of GPI-interacting components in the cell membrane that play a key role in the signal transduction and other biological functions of GPI-anchored proteins.


Assuntos
Glicosilfosfatidilinositóis , Proteínas , Glucosamina , Glicosilfosfatidilinositóis/química , Glicosilfosfatidilinositóis/metabolismo , Inositol/química , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA