Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMC Genomics ; 25(1): 226, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424480

RESUMO

Long-read sequencing is revolutionizing de-novo genome assemblies, with continued advancements making it more readily available for previously understudied, non-model organisms. Stony corals are one such example, with long-read de-novo genome assemblies now starting to be publicly available, opening the door for a wide array of 'omics-based research. Here we present a new de-novo genome assembly for the endangered Caribbean star coral, Orbicella faveolata, using PacBio circular consensus reads. Our genome assembly improved the contiguity (51 versus 1,933 contigs) and complete and single copy BUSCO orthologs (93.6% versus 85.3%, database metazoa_odb10), compared to the currently available reference genome generated using short-read methodologies. Our new de-novo assembled genome also showed comparable quality metrics to other coral long-read genomes. Telomeric repeat analysis identified putative chromosomes in our scaffolded assembly, with these repeats at either one, or both ends, of scaffolded contigs. We identified 32,172 protein coding genes in our assembly through use of long-read RNA sequencing (ISO-seq) of additional O. faveolata fragments exposed to a range of abiotic and biotic treatments, and publicly available short-read RNA-seq data. With anthropogenic influences heavily affecting O. faveolata, as well as its increasing incorporation into reef restoration activities, this updated genome resource can be used for population genomics and other 'omics analyses to aid in the conservation of this species.


Assuntos
Antozoários , Transcriptoma , Animais , Análise de Sequência de DNA/métodos , Antozoários/genética , Genoma , Região do Caribe , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
Proc Biol Sci ; 291(2019): 20232447, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531406

RESUMO

As environments are rapidly reshaped due to climate change, phenotypic plasticity plays an important role in the ability of organisms to persist and is considered an especially important acclimatization mechanism for long-lived sessile organisms such as reef-building corals. Often, this ability of a single genotype to display multiple phenotypes depending on the environment is modulated by changes in gene expression, which can vary in response to environmental changes via two mechanisms: baseline expression and expression plasticity. We used transcriptome-wide expression profiling of eleven genotypes of common-gardened Acropora cervicornis to explore genotypic variation in the expression response to thermal and acidification stress, both individually and in combination. We show that the combination of these two stressors elicits a synergistic gene expression response, and that both baseline expression and expression plasticity in response to stress show genotypic variation. Additionally, we demonstrate that frontloading of a large module of coexpressed genes is associated with greater retention of algal symbionts under combined stress. These results illustrate that variation in the gene expression response of individuals to climate change stressors can persist even when individuals have shared environmental histories, affecting their performance under future climate change scenarios.


Assuntos
Antozoários , Humanos , Animais , Antozoários/fisiologia , Recifes de Corais , Genótipo , Aclimatação/fisiologia , Adaptação Fisiológica , Mudança Climática
3.
Glob Chang Biol ; 28(16): 4751-4764, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35451154

RESUMO

Recent warm temperatures driven by climate change have caused mass coral bleaching and mortality across the world, prompting managers, policymakers, and conservation practitioners to embrace restoration as a strategy to sustain coral reefs. Despite a proliferation of new coral reef restoration efforts globally and increasing scientific recognition and research on interventions aimed at supporting reef resilience to climate impacts, few restoration programs are currently incorporating climate change and resilience in project design. As climate change will continue to degrade coral reefs for decades to come, guidance is needed to support managers and restoration practitioners to conduct restoration that promotes resilience through enhanced coral reef recovery, resistance, and adaptation. Here, we address this critical implementation gap by providing recommendations that integrate resilience principles into restoration design and practice, including for project planning and design, coral selection, site selection, and broader ecosystem context. We also discuss future opportunities to improve restoration methods to support enhanced outcomes for coral reefs in response to climate change. As coral reefs are one of the most vulnerable ecosystems to climate change, interventions that enhance reef resilience will help to ensure restoration efforts have a greater chance of success in a warming world. They are also more likely to provide essential contributions to global targets to protect natural biodiversity and the human communities that rely on reefs.


Assuntos
Antozoários , Recifes de Corais , Animais , Antozoários/fisiologia , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Humanos
4.
Glob Chang Biol ; 28(14): 4229-4250, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35475552

RESUMO

The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.


Assuntos
Antozoários , Mudança Climática , Animais , Antozoários/fisiologia , Recifes de Corais , Ecossistema
5.
Microb Ecol ; 84(3): 703-716, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34596709

RESUMO

Seagrass meadows are hotspots of biodiversity with considerable economic and ecological value. The health of seagrass ecosystems is influenced in part by the makeup and stability of their microbiome, but microbiome composition can be sensitive to environmental change such as nutrient availability, elevated temperatures, and reduced pH. The objective of the present study was to characterize the bacterial community of the leaves, bulk samples of roots and rhizomes, and proximal sediment of the seagrass species Cymodocea nodosa along the natural pH gradient of Levante Bay, Vulcano Island, Italy. The bacterial community was determined by characterizing the 16S rRNA amplicon sequencing and analyzing the operational taxonomic unit classification of bacterial DNA within samples. Statistical analyses were used to explore how life-long exposure to different pH/pCO2 conditions may be associated with significant differences in microbial communities, dominant bacterial classes, and microbial diversity within each plant section and sediment. The microbiome of C. nodosa significantly differed among all sample types and site-specific differences were detected within sediment and root/rhizome microbial communities, but not the leaves. These results show that C. nodosa leaves have a consistent microbial community even across a pH range of 8.15 to 6.05. The ability for C. nodosa to regulate and maintain microbial structure may indicate a semblance of resilience within these vital ecosystems under projected changes in environmental conditions such as ocean acidification.


Assuntos
Microbiota , Rizoma , Rizoma/química , Água do Mar/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Concentração de Íons de Hidrogênio , Força Próton-Motriz , Bactérias/genética
6.
Proc Biol Sci ; 288(1960): 20210923, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34641725

RESUMO

Knowledge of multi-stressor interactions and the potential for tradeoffs among tolerance traits is essential for developing intervention strategies for the conservation and restoration of reef ecosystems in a changing climate. Thermal extremes and acidification are two major co-occurring stresses predicted to limit the recovery of vital Caribbean reef-building corals. Here, we conducted an aquarium-based experiment to quantify the effects of increased water temperatures and pCO2 individually and in concert on 12 genotypes of the endangered branching coral Acropora cervicornis, currently being reared and outplanted for large-scale coral restoration. Quantification of 12 host, symbiont and holobiont traits throughout the two-month-long experiment showed several synergistic negative effects, where the combined stress treatment often caused a greater reduction in physiological function than the individual stressors alone. However, we found significant genetic variation for most traits and positive trait correlations among treatments indicating an apparent lack of tradeoffs, suggesting that adaptive evolution will not be constrained. Our results suggest that it may be possible to incorporate climate-resistant coral genotypes into restoration and selective breeding programmes, potentially accelerating adaptation.


Assuntos
Antozoários , Mudança Climática , Animais , Antozoários/genética , Recifes de Corais , Ecossistema , Espécies em Perigo de Extinção
7.
Proc Biol Sci ; 288(1961): 20211613, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34666521

RESUMO

The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.


Assuntos
Antozoários , Termotolerância , Animais , Antozoários/fisiologia , Censos , Recifes de Corais , Florida
8.
Environ Microbiol ; 22(12): 5341-5355, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32975356

RESUMO

Holobiont phenotype results from a combination of host and symbiont genotypes as well as from prevailing environmental conditions that alter the relationships among symbiotic members. Corals exemplify this concept, where shifts in the algal symbiont community can lead to some corals becoming more or less thermally tolerant. Despite linkage between coral bleaching and disease, the roles of symbiotic bacteria in holobiont resistance and susceptibility to disease remains less well understood. This study thus characterizes the microbiome of disease-resistant and -susceptible Acropora cervicornis coral genotypes (hereafter referred to simply as 'genotypes') before and after high temperature-mediated bleaching. We found that the intracellular bacterial parasite 'Ca. Aquarickettsia rohweri' was strikingly abundant in disease-susceptible genotypes. Disease-resistant genotypes, however, had notably more diverse and even communities, with correspondingly low abundances of 'Ca. Aquarickettsia'. Bleaching caused a dramatic reduction of 'Ca. Aquarickettsia' within disease-susceptible corals and led to an increase in bacterial community dispersion, as well as the proliferation of opportunists. Our data support the hypothesis that 'Ca. Aquarickettsia' species increase coral disease risk through two mechanisms: (i) the creation of host nutritional deficiencies leading to a compromised host-symbiont state and (ii) the opening of niche space for potential pathogens during thermal stress.


Assuntos
Alphaproteobacteria/fisiologia , Antozoários/microbiologia , Suscetibilidade a Doenças/microbiologia , Resposta ao Choque Térmico , Microbiota/genética , Animais , Antozoários/fisiologia , Resistência à Doença , Genótipo , Interações entre Hospedeiro e Microrganismos , Temperatura Alta
10.
Ann Rev Mar Sci ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227183

RESUMO

As climate change drives health declines of tropical reef species, diseases are further eroding ecosystem function and habitat resilience. Coral disease impacts many areas around the world, removing some foundation species to recorded low levels and thwarting worldwide efforts to restore reefs. What we know about coral disease processes remains insufficient to overcome many current challenges in reef conservation, yet cumulative research and management practices are revealing new disease agents (including bacteria, viruses, and eukaryotes), genetic host disease resistance factors, and innovative methods to prevent and mitigate epizootic events (probiotics, antibiotics, and disease resistance breeding programs). The recent outbreak of stony coral tissue loss disease across the Caribbean has reenergized and mobilized the research community to think bigger and do more. This review therefore focuses largely on novel emerging insights into the causes and mechanisms of coral disease and their applications to coral restoration and conservation.

11.
Science ; 381(6665): 1414-1415, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769086

RESUMO

Genome-wide study in staghorn coral identifies markers of disease resistance.


Assuntos
Antozoários , Recifes de Corais , Resistência à Doença , Animais , Antozoários/genética , Antozoários/imunologia , Resistência à Doença/genética , Estudo de Associação Genômica Ampla
12.
ISME J ; 17(3): 486-489, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36510006

RESUMO

The sensitivity of reef-building coral to elevated temperature is a function of their symbiosis with dinoflagellate algae in the family Symbiodiniaceae. Changes in the composition of the endosymbiont community in response to thermal stress can increase coral thermal tolerance. Consequently, this mechanism is being investigated as a human-assisted intervention for rapid acclimation of coral in the face of climate change. Successful establishment of novel symbioses that increase coral thermal tolerance have been demonstrated in laboratory conditions; however, it is unclear how long these heterologous relationships persist in nature. Here, we test the persistence of a novel symbiosis between Acropora palmata and Durusdinium spp. from Mote Marine Laboratory's ex situ nursery by outplanting clonal replicates (ramets) of five A. palmata host genotypes to natural reefs in the lower Florida Keys. Amplicon sequencing analysis of ITS2-type profiles revealed that the majority of surviving ramets remained dominated by Durusdinium spp. two years after transplantation. However, 15% of ramets, including representatives of all genotypes, exhibited some degree of symbiont shuffling or switching at six of eight sites, including complete takeover by site-specific strains of the native symbiont, Symbiodinium fitti. The predominant long-term stability of the novel symbiosis supports the potential effectiveness of symbiont modification as a management tool. Although, the finding that 6-7 year-old coral can alter symbiont community composition in the absence of bleaching indicates that Symbiodiniaceae communities are indeed capable of great flexibility under ambient conditions.


Assuntos
Antozoários , Dinoflagellida , Animais , Humanos , Criança , Recifes de Corais , Antozoários/fisiologia , Dinoflagellida/genética , Aclimatação/fisiologia , Genótipo , Simbiose
13.
Sci Rep ; 13(1): 3617, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869057

RESUMO

Chronically high levels of inorganic nutrients have been documented in Florida's coral reefs and are linked to increased prevalence and severity of coral bleaching and disease. Naturally disease-resistant genotypes of the staghorn coral Acropora cervicornis are rare, and it is unknown whether prolonged exposure to acute or chronic high nutrient levels will reduce the disease tolerance of these genotypes. Recently, the relative abundance of the bacterial genus Aquarickettsia was identified as a significant indicator of disease susceptibility in A. cervicornis, and the abundance of this bacterial species was previously found to increase under chronic and acute nutrient enrichment. We therefore examined the impact of common constituents of nutrient pollution (phosphate, nitrate, and ammonium) on microbial community structure in a disease-resistant genotype with naturally low abundances of Aquarickettsia. We found that although this putative parasite responded positively to nutrient enrichment in a disease-resistant host, relative abundances remained low (< 0.5%). Further, while microbial diversity was not altered significantly after 3 weeks of nutrient enrichment, 6 weeks of enrichment was sufficient to shift microbiome diversity and composition. Coral growth rates were also reduced by 6 weeks of nitrate treatment compared to untreated conditions. Together these data suggest that the microbiomes of disease-resistant A. cervicornis may be initially resistant to shifts in microbial community structure, but succumb to compositional and diversity alterations after more sustained environmental pressure. As the maintenance of disease-resistant genotypes is critical for coral population management and restoration, a complete understanding of how these genotypes respond to environmental stressors is necessary to predict their longevity.


Assuntos
Antozoários , Microbiota , Animais , Nitratos , Genótipo , Nutrientes , Rickettsiales
14.
Nat Commun ; 14(1): 2915, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217477

RESUMO

Stony coral tissue loss disease (SCTLD), one of the most pervasive and virulent coral diseases on record, affects over 22 species of reef-building coral and is decimating reefs throughout the Caribbean. To understand how different coral species and their algal symbionts (family Symbiodiniaceae) respond to this disease, we examine the gene expression profiles of colonies of five species of coral from a SCTLD transmission experiment. The included species vary in their purported susceptibilities to SCTLD, and we use this to inform gene expression analyses of both the coral animal and their Symbiodiniaceae. We identify orthologous coral genes exhibiting lineage-specific differences in expression that correlate to disease susceptibility, as well as genes that are differentially expressed in all coral species in response to SCTLD infection. We find that SCTLD infection induces increased expression of rab7, an established marker of in situ degradation of dysfunctional Symbiodiniaceae, in all coral species accompanied by genus-level shifts in Symbiodiniaceae photosystem and metabolism gene expression. Overall, our results indicate that SCTLD infection induces symbiophagy across coral species and that the severity of disease is influenced by Symbiodiniaceae identity.


Assuntos
Antozoários , Dinoflagellida , Animais , Antozoários/fisiologia , Recifes de Corais , Dinoflagellida/genética , Transcriptoma , Perfilação da Expressão Gênica , Simbiose/genética
15.
ISME Commun ; 3(1): 19, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894742

RESUMO

Stony coral tissue loss disease (SCTLD) has been causing significant whole colony mortality on reefs in Florida and the Caribbean. The cause of SCTLD remains unknown, with the limited concurrence of SCTLD-associated bacteria among studies. We conducted a meta-analysis of 16S ribosomal RNA gene datasets generated by 16 field and laboratory SCTLD studies to find consistent bacteria associated with SCTLD across disease zones (vulnerable, endemic, and epidemic), coral species, coral compartments (mucus, tissue, and skeleton), and colony health states (apparently healthy colony tissue (AH), and unaffected (DU) and lesion (DL) tissue from diseased colonies). We also evaluated bacteria in seawater and sediment, which may be sources of SCTLD transmission. Although AH colonies in endemic and epidemic zones harbor bacteria associated with SCTLD lesions, and aquaria and field samples had distinct microbial compositions, there were still clear differences in the microbial composition among AH, DU, and DL in the combined dataset. Alpha-diversity between AH and DL was not different; however, DU showed increased alpha-diversity compared to AH, indicating that, prior to lesion formation, corals may undergo a disturbance to the microbiome. This disturbance may be driven by Flavobacteriales, which were especially enriched in DU. In DL, Rhodobacterales and Peptostreptococcales-Tissierellales were prominent in structuring microbial interactions. We also predict an enrichment of an alpha-toxin in DL samples which is typically found in Clostridia. We provide a consensus of SCTLD-associated bacteria prior to and during lesion formation and identify how these taxa vary across studies, coral species, coral compartments, seawater, and sediment.

16.
FEMS Microbiol Ecol ; 98(2)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35157069

RESUMO

Nutrient pollution is linked to coral disease susceptibility and severity, but the mechanism behind this effect remains underexplored. A recently identified bacterial species, 'Ca. Aquarickettsia rohweri,' is hypothesized to parasitize the Caribbean staghorn coral, Acropora cervicornis, leading to reduced coral growth and increased disease susceptibility. Aquarickettsia rohweri is hypothesized to assimilate host metabolites and ATP and was previously demonstrated to be highly nutrient-responsive. As nutrient enrichment is a pervasive issue in the Caribbean, this study examined the effects of common nutrient pollutants (nitrate, ammonium, and phosphate) on a disease-susceptible genotype of A. cervicornis. Microbial diversity was found to decline over the course of the experiment in phosphate-, nitrate-, and combined-treated samples, and quantitative PCR indicated that Aquarickettsia abundance increased significantly across all treatments. Only treatments amended with phosphate, however, exhibited a significant shift in Aquarickettsia abundance relative to other taxa. Furthermore, corals exposed to phosphate had significantly lower linear extension than untreated or nitrate-treated corals after 3 weeks of nutrient exposure. Together these data suggest that while experimental tank conditions, with an elevated nutrient regime associated with coastal waters, increased total bacterial abundance, only the addition of phosphate significantly altered the ratios of Aquarickettsia compared to other members of the microbiome.


Assuntos
Antozoários , Microbiota , Parasitos , Animais , Antozoários/microbiologia , Recifes de Corais , Genótipo , Fosfatos
17.
PeerJ ; 10: e13017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35287349

RESUMO

Large scale ex situ propagation of coral colonies for reef restoration is a relatively new and developing field. One of the many advantages of utilizing ex situ coral nurseries is the ability to optimize water quality conditions for coral health and survival. Slight alterations in environmental parameters (light, pH, temperature etc.) can affect the health and grow-out time of cultured coral, ultimately influencing production rates. However, corals are also subjected to pests associated with culture facilities such as ciliates, cyanobacterial blooms, and infectious diseases. Therefore, adjusting environmental parameters to optimize coral growth for a shorter ex situ residency time will lead to greater survival and faster restoration. Studies indicate that some coral species demonstrate parabolic tissue growth in response to increasing sea-surface temperatures until the maximum temperature tolerance is reached, whereafter they bleach. To maximize coral growth in Mote Marine Laboratory's ex situ system, we tested the effect of two water temperature treatments (high temperature: 29.5 ± 0.03 °C; control: 25.2 ± 0.08 °C) on two coral species commonly used in reef restoration. To quantify this, we used four replicates of three genotypes each of Montastraea cavernosa (n = 12) and Acropora palmata (n = 12). Two-dimensional tissue area was recorded monthly using ImageJ and survival rates within each treatment were documented for 7 months. Results found that M. cavernosa had greater growth rates and equal survivorship in the high temperature treatment compared to the control treatment. A. palmata grew faster and had equal survivorship in the control treatment compared with the high temperature treatment. These results suggest that temperature preferences exist among coral species within ex situ systems and restoration practitioners should consider species-specific temperature regimes to maximize ex situ coral growth rates. This information is critical for optimizing production when corals are in the grow-out stage and should also be considered when designing ex situ systems to ensure temperature regulation can be controlled on a species-specific basis.


Assuntos
Antozoários , Berçários para Lactentes , Animais , Lactente , Humanos , Antozoários/genética , Temperatura , Recifes de Corais , Água do Mar
18.
PeerJ ; 10: e13574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35729906

RESUMO

Effective coral restoration must include comprehensive investigations of the targeted coral community that consider all aspects of the coral holobiont-the coral host, symbiotic algae, and microbiome. For example, the richness and composition of microorganisms associated with corals may be indicative of the corals' health status and thus help guide restoration activities. Potential differences in microbiomes of restoration corals due to differences in host genetics, environmental condition, or geographic location, may then influence outplant success. The objective of the present study was to characterize and compare the microbiomes of apparently healthy Acropora cervicornis genotypes that were originally collected from environmentally distinct regions of Florida's Coral Reef and sampled after residing within Mote Marine Laboratory's in situ nursery near Looe Key, FL (USA) for multiple years. By using 16S rRNA high-throughput sequencing, we described the microbial communities of 74 A. cervicornis genotypes originating from the Lower Florida Keys (n = 40 genotypes), the Middle Florida Keys (n = 15 genotypes), and the Upper Florida Keys (n = 19 genotypes). Our findings demonstrated that the bacterial communities of A. cervicornis originating from the Lower Keys were significantly different from the bacterial communities of those originating from the Upper and Middle Keys even after these corals were held within the same common garden nursery for an average of 3.4 years. However, the bacterial communities of corals originating in the Upper Keys were not significantly different from those in the Middle Keys. The majority of the genotypes, regardless of collection region, were dominated by Alphaproteobacteria, namely an obligate intracellular parasite of the genus Ca. Aquarickettsia. Genotypes from the Upper and Middle Keys also had high relative abundances of Spirochaeta bacteria. Several genotypes originating from both the Lower and Upper Keys had lower abundances of Aquarickettsia, resulting in significantly higher species richness and diversity. Low abundance of Aquarickettsia has been previously identified as a signature of disease resistance. While the low-Aquarickettsia corals from both the Upper and Lower Keys had high abundances of an unclassified Proteobacteria, the genotypes in the Upper Keys were also dominated by Spirochaeta. The results of this study suggest that the abundance of Aquarickettsia and Spirochaeta may play an important role in distinguishing bacterial communities among A. cervicornis populations and compositional differences of these bacterial communities may be driven by regional processes that are influenced by both the environmental history and genetic relatedness of the host. Additionally, the high microbial diversity of low-Aquarickettsia genotypes may provide resilience to their hosts, and these genotypes may be a potential resource for restoration practices and management.


Assuntos
Antozoários , Microbiota , Animais , Recifes de Corais , Florida , RNA Ribossômico 16S/genética , Espécies em Perigo de Extinção , Antozoários/genética , Bactérias/genética , Rickettsiales/genética , Microbiota/genética
19.
PLoS One ; 17(10): e0276902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36288339

RESUMO

Infectious disease outbreaks are a primary contributor to coral reef decline worldwide. A particularly lethal disease, black band disease (BBD), was one of the first coral diseases reported and has since been documented on reefs worldwide. BBD is described as a microbial consortium of photosynthetic cyanobacteria, sulfate-reducing and sulfide-oxidizing bacteria, and heterotrophic bacteria and archaea. The disease is visually identified by a characteristic dark band that moves across apparently healthy coral tissue leaving behind bare skeleton. Despite its virulence, attempts to effectively treat corals with BBD in the field have been limited. Here, we developed and tested several different therapeutic agents on Pseudodiploria spp. corals with signs of active BBD at Buck Island Reef National Monument in St. Croix, USVI. A variety of therapies were tested, including hydrogen peroxide-based treatments, ointment containing antibiotics, and antiviral/antimicrobial-based ointments (referred to as CoralCure). The CoralCure ointments, created by Ocean Alchemists LLC, focused on the dosing regimen and delivery mechanisms of the different active ingredients. Active ingredients included carbamide peroxide, Lugol's iodine solution, along with several proprietary essential oil and natural product blends. Additionally, the active ingredients had different release times based on treatment: CoralCure A-C had a release time of 24 hours, CoralCure D-F had a release time of 72 hours. The ointments were applied directly to the BBD lesion. Also, jute rope was saturated with a subset of these CoralCure ointment formulations to assist with adhesion. These ropes were then applied to the leading edge of the BBD lesion for one week to ensure sufficient exposure. Corals were revisited approximately three to five months after treatment application to assess disease progression rates and the presence/absence of lesions-the metrics used to quantify the efficacy of each treatment. Although most of the treatments were unsuccessful, two CoralCure rope formulations-CoralCure D rope and CoralCure E rope, eliminated the appearance of BBD in 100% of the corals treated. As such, these treatments significantly reduced the likelihood of BBD occurrence compared to the untreated controls. Additionally, lesions treated with these formulations lost significantly less tissue compared with controls. These results provide the mechanisms for an easily employable method to effectively treat a worldwide coral disease.


Assuntos
Antozoários , Produtos Biológicos , Cianobactérias , Óleos Voláteis , Animais , Antozoários/microbiologia , Pomadas , Peróxido de Hidrogênio , Peróxido de Carbamida , Sulfatos , Sulfetos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antivirais
20.
Sci Adv ; 8(39): eabo6153, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179017

RESUMO

Infectious diseases are an increasing threat to coral reefs, resulting in altered community structure and hindering the functional contributions of disease-susceptible species. We exposed seven reef-building coral species from the Caribbean to white plague disease and determined processes involved in (i) lesion progression, (ii) within-species gene expression plasticity, and (iii) expression-level adaptation among species that lead to differences in disease risk. Gene expression networks enriched in immune genes and cytoskeletal arrangement processes were correlated to lesion progression rates. Whether or not a coral developed a lesion was mediated by plasticity in genes involved in extracellular matrix maintenance, autophagy, and apoptosis, while resistant coral species had constitutively higher expression of intracellular protein trafficking. This study offers insight into the process involved in lesion progression and within- and between-species dynamics that lead to differences in disease risk that is evident on current Caribbean reefs.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Resistência à Doença/genética , Plásticos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA