Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 82(4): 2004-2010, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28103020

RESUMO

Functionalized diazatetracenes are prepared using a new two-step sequence. The use of a dichlorobenzaldehyde in a Cu-catalyzed benzannulation of acetylenes provides functionalized dichloronaphthalenes that afford diazatetracenes using Buchwald-Hartwig aminations. This approach provides unique substitution patterns and rapid access to covalently linked dimeric diazatetracenes. Their electronic properties are characterized by UV-vis absorption/emission and cyclic voltammetry, revealing strong effects from both external stimuli by acid and internal substituent effects.

2.
Adv Mater ; 32(42): e2004205, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32939866

RESUMO

2D covalent organic frameworks (2D COFs) are a unique materials platform that combines covalent connectivity, structural regularity, and molecularly precise porosity. However, 2D COFs typically form insoluble aggregates, thus limiting their processing via additive manufacturing techniques. In this work, colloidal suspensions of boronate-ester-linked 2D COFs are used as a spray-coating ink to produce large-area 2D COF thin films. This method is synthetically general, with five different 2D COFs prepared as colloidal inks and subsequently spray-coated onto a diverse range of substrates. Moreover, this approach enables the deposition of multiple 2D COF materials simultaneously, which is not possible by polymerizing COFs on substrates directly. When combined with stencil masks, spray-coated 2D COFs are rapidly deposited as thin films larger than 200 cm2 with line resolutions below 50 µm. To demonstrate that this deposition scheme preserves the desirable attributes of 2D COFs, spray-coated 2D COF thin films are incorporated as the active material in acoustic sensors. These 2D-COF-based sensors have a 10 ppb limit-of-quantification for trimethylamine, which places them among the most sensitive sensors for meat and seafood spoilage. Overall, this work establishes a scalable additive manufacturing technique that enables the integration of 2D COFs into thin-film device architectures.

3.
ACS Cent Sci ; 2(9): 667-673, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27725966

RESUMO

The low conductivity of two-dimensional covalent organic frameworks (2D COFs), and most related coordination polymers, limits their applicability in optoelectronic and electrical energy storage (EES) devices. Although some networks exhibit promising conductivity, these examples generally lack structural versatility, one of the most attractive features of framework materials design. Here we enhance the electrical conductivity of a redox-active 2D COF film by electropolymerizing 3,4-ethylenedioxythiophene (EDOT) within its pores. The resulting poly(3,4-ethylenedioxythiophene) (PEDOT)-infiltrated COF films exhibit dramatically improved electrochemical responses, including quantitative access to their redox-active groups, even for 1 µm-thick COF films that otherwise provide poor electrochemical performance. PEDOT-modified COF films can accommodate high charging rates (10-1600 C) without compromising performance and exhibit both a 10-fold higher current response relative to unmodified films and stable capacitances for at least 10 000 cycles. This work represents the first time that electroactive COFs or crystalline framework materials have shown volumetric energy and power densities comparable with other porous carbon-based electrodes, thereby demonstrating the promise of redox-active COFs for EES devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA