Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Immunity ; 47(1): 66-79.e5, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28723554

RESUMO

Hypoxia augments inflammatory responses and osteoclastogenesis by incompletely understood mechanisms. We identified COMMD1 as a cell-intrinsic negative regulator of osteoclastogenesis that is suppressed by hypoxia. In human macrophages, COMMD1 restrained induction of NF-κB signaling and a transcription factor E2F1-dependent metabolic pathway by the cytokine RANKL. Downregulation of COMMD1 protein expression by hypoxia augmented RANKL-induced expression of inflammatory and E2F1 target genes and downstream osteoclastogenesis. E2F1 targets included glycolysis and metabolic genes including CKB that enabled cells to meet metabolic demands in challenging environments, as well as inflammatory cytokine-driven target genes. Expression quantitative trait locus analysis linked increased COMMD1 expression with decreased bone erosion in rheumatoid arthritis. Myeloid deletion of Commd1 resulted in increased osteoclastogenesis in arthritis and inflammatory osteolysis models. These results identify COMMD1 and an E2F-metabolic pathway as key regulators of osteoclastogenic responses under pathological inflammatory conditions and provide a mechanism by which hypoxia augments inflammation and bone destruction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Artrite Reumatoide/imunologia , Macrófagos/imunologia , Osteogênese/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Fator de Transcrição E2F1/metabolismo , Feminino , Humanos , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais
3.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373260

RESUMO

Previously, we have shown that mitochondrial transplantation in the sepsis model has immune modulatory effects. The mitochondrial function could have different characteristics dependent on cell types. Here, we investigated whether the effects of mitochondrial transplantation on the sepsis model could be different depending on the cell type, from which mitochondria were isolated. We isolated mitochondria from L6 muscle cells, clone 9 liver cells and mesenchymal stem cells (MSC). We tested the effects of mitochondrial transplantation using in vitro and in vivo sepsis models. We used the LPS stimulation of THP-1 cell, a monocyte cell line, as an in vitro model. First, we observed changes in mitochondrial function in the mitochondria-transplanted cells. Second, we compared the anti-inflammatory effects of mitochondrial transplantation. Third, we investigated the immune-enhancing effects using the endotoxin tolerance model. In the in vivo polymicrobial fecal slurry sepsis model, we examined the survival and biochemical effects of each type of mitochondrial transplantation. In the in vitro LPS model, mitochondrial transplantation with each cell type improved mitochondrial function, as measured by oxygen consumption. Among the three cell types, L6-mitochondrial transplantation significantly enhanced mitochondrial function. Mitochondrial transplantation with each cell type reduced hyper-inflammation in the acute phase of in vitro LPS model. It also enhanced immune function during the late immune suppression phase, as shown by endotoxin tolerance. These functions were not significantly different between the three cell types of origin for mitochondrial transplantation. However, only L6-mitochondrial transplantation significantly improved survival compared to the control in the polymicrobial intraabdominal sepsis model. The effects of mitochondria transplantation on both in vitro and in vivo sepsis models differed depending on the cell types of origin for mitochondria. L6-mitochondrial transplantation might be more beneficial in the sepsis model.


Assuntos
Lipopolissacarídeos , Sepse , Humanos , Lipopolissacarídeos/metabolismo , Mitocôndrias/metabolismo , Sepse/metabolismo , Inflamação/metabolismo , Monócitos/metabolismo
4.
Int J Mol Sci ; 23(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35743025

RESUMO

Immune suppression is known to occur during sepsis. Endotoxin tolerance is considered a mechanism of immune suppression in sepsis. However, the timing and serial changes in endotoxin tolerance have not been fully investigated. In this study, we investigated serial changes in endotoxin tolerance in a polymicrobial sepsis model. Herein, we used a rat model of fecal slurry polymicrobial sepsis. After induction of sepsis, endotoxin tolerance of peripheral blood mononuclear cells (PBMCs) and splenocytes was measured at various time points (6 h, 12 h, 24 h, 48 h, 72 h, 5 days, and 7 days), through the measurement of TNF-α production after stimulation with lipopolysaccharide (LPS) in an ex vivo model. At each time point, we checked for plasma tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 levels. Moreover, we analyzed reactive oxygen species (ROS) as measured by 2',7'-dichlorodihydrofluorescein, plasma lactate, serum alanine aminotransferase (ALT), and creatinine levels. Nuclear factor (NF)-κB, IL-1 receptor-associated kinase (IRAK)-M, and cleaved caspase 3 levels were measured in the spleen. Endotoxin tolerance, measured by TNF-α production stimulated through LPS in PBMCs and splenocytes, was induced early in the sepsis model, starting from 6 h after sepsis. It reached a nadir at 24 to 48 h after sepsis, and then started to recover. Endotoxin tolerance was more prominent in the severe sepsis model. Plasma cytokines peaked at time points ranging from 6 to 12 h after sepsis. ROS levels peaked at 12 h and then decreased. Lactate, ALT, and serum creatinine levels increased up to 24 to 48 h, and then decreased. Phosphorylated p65 and IRAK-M levels of spleen increased up to 12 to 24 h and then decreased. Apoptosis was prominent 48 h after sepsis, and then recovered. In the rat model of polymicrobial sepsis, endotoxin tolerance occurred earlier and started to recover from 24 to 48 h after sepsis.


Assuntos
Lipopolissacarídeos , Sepse , Animais , Tolerância à Endotoxina , Interleucina-6 , Lactatos , Leucócitos Mononucleares , Lipopolissacarídeos/farmacologia , NF-kappa B , Ratos , Espécies Reativas de Oxigênio , Sepse/patologia , Fator de Necrose Tumoral alfa
5.
J Immunol ; 203(1): 105-116, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109956

RESUMO

We found that protease-activated receptor 1 (PAR1) was transiently induced in cultured osteoclast precursor cells. Therefore, we examined the bone phenotype and response to resorptive stimuli of PAR1-deficient (knockout [KO]) mice. Bones and bone marrow-derived cells from PAR1 KO and wild-type (WT) mice were assessed using microcomputed tomography, histomorphometry, in vitro cultures, and RT-PCR. Osteoclastic responses to TNF-α (TNF) challenge in calvaria were analyzed with and without a specific neutralizing Ab to the Notch2-negative regulatory region (N2-NRR Ab). In vivo under homeostatic conditions, there were minimal differences in bone mass or bone cells between PAR1 KO and WT mice. However, PAR1 KO myeloid cells demonstrated enhanced osteoclastogenesis in response to receptor activator of NF-κB ligand (RANKL) or the combination of RANKL and TNF. Strikingly, in vivo osteoclastogenic responses of PAR1 KO mice to TNF were markedly enhanced. We found that N2-NRR Ab reduced TNF-induced osteoclastogenesis in PAR1 KO mice to WT levels without affecting WT responses. Similarly, in vitro N2-NRR Ab reduced RANKL-induced osteoclastogenesis in PAR1 KO cells to WT levels without altering WT responses. We conclude that PAR1 functions to limit Notch2 signaling in responses to RANKL and TNF and moderates osteoclastogenic response to these cytokines. This effect appears, at least in part, to be cell autonomous because enhanced osteoclastogenesis was seen in highly purified PAR1 KO osteoclast precursor cells. It is likely that this pathway is involved in regulating the response of bone to diseases associated with inflammatory signals.


Assuntos
Doenças Ósseas/imunologia , Inflamação/imunologia , Osteoclastos/fisiologia , Receptor Notch2/metabolismo , Receptor PAR-1/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese/genética , Ligante RANK/metabolismo , Receptor Notch2/imunologia , Receptor PAR-1/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
6.
J Cell Physiol ; 231(2): 449-458, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26189496

RESUMO

Investigations on the therapeutic effects of intravenous immunoglobulin (IVIG) have focused on the suppression of autoantibody and immune complex-mediated inflammatory pathogenesis. Inflammatory diseases such as rheumatoid arthritis are often accompanied by excessive bone erosion but the effect of IVIG on osteoclasts, bone-resorbing cells, has not been studied. Here, we investigate whether IVIG directly regulates osteoclast differentiation and has therapeutic potential for suppressing osteoclast-mediated pathologic bone resorption. IVIG or cross-linking of Fcγ receptors with plate-bound IgG suppressed receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteoclastogenesis and expression of osteoclast-related genes such as integrin ß3 and cathepsin K in a dose-dependent manner. Mechanistically, IVIG or plate-bound IgG suppressed osteoclastogenesis by downregulating RANKL-induced expression of NFATC1, the master regulator of osteoclastogenesis. IVIG suppressed NFATC1 expression by attenuating RANKL-induced NF-κB signaling, explained in part by induction of the inflammatory signaling inhibitor A20. IVIG administration attenuated in vivo osteoclastogenesis and suppressed bone resorption in the tumor necrosis factor (TNF)-induced calvarial osteolysis model. Our findings show that, in addition to suppressing inflammation, IVIG directly inhibits osteoclastogenesis through a mechanism involving suppression of RANK signaling. Direct suppression of osteoclast differentiation may provide beneficial effects on preserving bone mass when IVIG is used to treat rheumatic disorders.


Assuntos
Reabsorção Óssea/terapia , Cisteína Endopeptidases/biossíntese , Imunoglobulinas Intravenosas/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/genética , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Ligante RANK/metabolismo , Doenças Reumáticas/metabolismo , Doenças Reumáticas/patologia , Doenças Reumáticas/terapia , Transdução de Sinais , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/fisiologia
7.
Life (Basel) ; 12(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35330172

RESUMO

Steroids are currently being used in sepsis, particularly in septic shock. However, clinical trials to date have shown contradictory results. This could be attributed to the different patient endotypes and steroid doses, which have also contributed to the inconclusive results. We investigated the effects of glucocorticoid therapy on sepsis in a polymicrobial sepsis model in a variety of settings, such as steroid dose, severity, and sepsis phase. We used a rat model of fecal slurry polymicrobial sepsis. First, we investigated the optimum dose of steroids in a sepsis model. We administered different doses of dexamethasone after sepsis induction (0.1DEX; 0.1 mg/kg, 0.2DEX; 0.2 mg/kg, 5DEX; 5 mg/kg). Second, we used two different severities of the fecal slurry polymicrobial sepsis rat model to examine the effects of the steroids. A moderate or severe model was defined as a survival rate of approximately 70% and 30%, respectively. Third, we administered steroids in an early (1 h after sepsis induction) or late phase (25 h after sepsis). In all the experiments, we investigated the survival rates. In the determined optimal model and settings, we measured serum lactate, alanine transferase (ALT), creatinine, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-10, and arterial blood gas. We evaluated the bacterial burden in the blood and spleen. Endotoxin tolerance of peripheral blood mononuclear cells (PBMCs) and splenocytes was also investigated to determine the level of immune suppression 24 h after sepsis by measuring TNF-α production after stimulation with lipopolysaccharide (LPS) in an ex vivo model. Early treatment of 0.2 mg/kg dexamethasone in a severe sepsis model showed the best beneficial effects. In moderate- or late-phase sepsis, there was no survival gain with steroid treatment. DEX0.2 group showed less acute kidney injury manifested by serum creatinine and blood urea nitrogen. DEX decreased the levels of cytokines, including IL-6, IL-10, and TNF-α. Colony-forming units were significantly decreased in the blood when administered with dexamethasone. Endotoxin tolerance was not significantly different between the DEX0.2 and control groups. In conclusion, early treatment of 0.2 mg/kg dexamethasone improved the outcomes of rats in a severe sepsis model.

8.
Bone Res ; 9(1): 4, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33424022

RESUMO

Osteoporosis is a metabolic bone disease with dysregulated coupling between bone resorption and bone formation, which results in decreased bone mineral density. The MEF2C locus, which encodes the transcription factor MADS box transcription enhancer factor 2, polypeptide C (MEF2C), is strongly associated with adult osteoporosis and osteoporotic fractures. Although the role of MEF2C in bone and cartilage formation by osteoblasts, osteocytes, and chondrocytes has been studied, the role of MEF2C in osteoclasts, which mediate bone resorption, remains unclear. In this study, we identified MEF2C as a positive regulator of human and mouse osteoclast differentiation. While decreased MEF2C expression resulted in diminished osteoclastogenesis, ectopic expression of MEF2C enhanced osteoclast generation. Using transcriptomic and bioinformatic approaches, we found that MEF2C promotes the RANKL-mediated induction of the transcription factors c-FOS and NFATc1, which play a key role in osteoclastogenesis. Mechanistically, MEF2C binds to FOS regulatory regions to induce c-FOS expression, leading to the activation of NFATC1 and downstream osteoclastogenesis. Inducible deletion of Mef2c in mice resulted in increased bone mass under physiological conditions and protected mice from bone erosion by diminishing osteoclast formation in K/BxN serum induced arthritis, a murine model of inflammatory arthritis. Our findings reveal direct regulation of osteoclasts by MEF2C, thus adding osteoclasts as a cell type in which altered MEF2C expression or function can contribute to pathological bone remodeling.

9.
J Clin Med ; 10(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801494

RESUMO

Intra-abdominal infection (IAI) is a common and important cause of infectious mortality in intensive care units. Adequate source control and appropriate antimicrobial regimens are key in the management of IAI. In community-acquired IAI, guidelines recommend the use of different antimicrobial regimens according to severity. However, the evidence for this is weak. We investigated the effect of enterococcal coverage in antimicrobial regimens in a severe polymicrobial IAI model. We investigated the effects of imipenem/cilastatin (IMP) and ceftriaxone with metronidazole (CTX+M) in a rat model of severe IAI. We observed the survival rate and bacterial clearance rate. We identified the bacteria in blood culture. We measured lactate, alanine aminotransferase (ALT), creatinine, interleukin (IL)-6, IL-10, and reactive oxygen species (ROS) in the blood. Endotoxin tolerance of peripheral blood mononuclear cells (PBMCs) was also estimated to determine the level of immune suppression. In the severe IAI model, IMP improved survival and bacterial clearance compared to CTX+M. Enterococcus spp. were more frequently isolated in the CTX+M group. IMP also decreased plasma lactate, cytokine, and ROS levels. ALT and creatinine levels were lower in IMP group. In the mild-to-moderate IAI model, however, there was no survival difference between the groups. Immune suppression of PBMCs was observed in IAI model, and it was more prominent in the severe IAI model. Compared to CTX+M, IMP improved the outcome of rats in severe IAI model.

10.
J Orthop Res ; 39(4): 719-726, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32915488

RESUMO

Administration of bisphosphonates following total joint arthroplasty might be beneficial to reduce aseptic loosening. However, their effects on peri-implant bone formation and bone-implant interface strength have not been investigated yet. We used a physiologically loaded mouse implant model to investigate the short-term effects of postoperative systemic alendronate on osseointegration. A titanium implant with a rough surface was inserted in the proximal tibiae of 17-week-old female C57BL/6 mice (n = 44). Postimplantation mice were given alendronate (73 µg/kg/days, n = 22) or vehicle (n = 22) 5 days/week. At 7- and 14-day postimplantation, histology and histomorphometry were conducted. At 28 days, microcomputed tomography and biomechanical testing were performed (n = 10/group). Postoperative alendronate treatment enhanced osseointegration, increasing maximum pullout load by 45% (p < .001) from 19.1 ± 4.5 N in the control mice to 27.6 ± 4.9 N in the treated mice, at day 28 postimplantation. Alendronate treatment increased the bone volume fraction by 139% (p < .001) in the region distal to the implant and 60% (p < .05) in the peri-implant region. At 14-day postimplantation, alendronate treatment decreased the number of osteoclasts per bone perimeter (p < .05) and increased bone volume fraction (p < .01) when compared with the control group. Postimplantation, short-term alendronate treatment enhanced osseointegration as demonstrated by increased bone mass, trabecular bone thickness, and maximum pullout load. Alendronate decreased peri-implant osteoclasts while preserving peri-implant osteoblasts and endothelial cells, in turn, increasing bone volume fraction. This data supports the postoperative clinical use of bisphosphonates, especially in patients with high risks of aseptic loosening.


Assuntos
Alendronato/farmacologia , Artroplastia de Substituição , Conservadores da Densidade Óssea/farmacologia , Osseointegração/efeitos dos fármacos , Animais , Densidade Óssea/efeitos dos fármacos , Substitutos Ósseos , Interface Osso-Implante , Difosfonatos/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Período Pós-Operatório , Estresse Mecânico , Tíbia/cirurgia , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA