Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nature ; 570(7759): 45-51, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133686

RESUMO

The 1989 claim of 'cold fusion' was publicly heralded as the future of clean energy generation. However, subsequent failures to reproduce the effect heightened scepticism of this claim in the academic community, and effectively led to the disqualification of the subject from further study. Motivated by the possibility that such judgement might have been premature, we embarked on a multi-institution programme to re-evaluate cold fusion to a high standard of scientific rigour. Here we describe our efforts, which have yet to yield any evidence of such an effect. Nonetheless, a by-product of our investigations has been to provide new insights into highly hydrided metals and low-energy nuclear reactions, and we contend that there remains much interesting science to be done in this underexplored parameter space.

2.
Nature ; 564(7736): 386-389, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30568194

RESUMO

Intermolecular forces are pervasive in nature and give rise to various phenomena including surface wetting1, adhesive forces in biology2,3, and the Casimir effect4, which causes two charge-neutral, metal objects in vacuum to attract each other. These interactions are the result of quantum fluctuations of electromagnetic waves and the boundary conditions imposed by the interacting materials. When the materials are optically anisotropic, different polarizations of light experience different refractive indices and a torque is expected to occur that causes the materials to rotate to a position of minimum energy5,6. Although predicted more than four decades ago, the small magnitude of the Casimir torque has so far prevented direct measurements of it. Here we experimentally measure the Casimir torque between two optically anisotropic materials-a solid birefringent crystal (calcite, lithium niobite, rutile or yttrium vanadate) and a liquid crystal (5CB). We control the sign and strength of the torque, and its dependence on the rotation angle and the separation distance between the materials, through the choice of materials. The values that we measure agree with calculations, verifying the long-standing prediction that a mechanical torque induced by quantum fluctuations can exist between two separated objects. These results open the door to using the Casimir torque as a micro- or nanoscale actuation mechanism, which would be relevant for a range of technologies, including microelectromechanical systems and liquid crystals.

3.
Phys Rev Lett ; 130(19): 196901, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243642

RESUMO

Vacuum fluctuation-induced interactions between macroscopic metallic objects result in an attractive force between them, a phenomenon known as the Casimir effect. This force is the result of both plasmonic and photonic modes. For very thin films, field penetration through the films will modify the allowed modes. Here, we theoretically investigate the Casimir interaction between ultrathin films from the perspective of force distribution over real frequencies for the first time. Pronounced repulsive contributions to the force are found due to the highly confined and nearly dispersion-free epsilon-near-zero (ENZ) modes that only exist in ultrathin films. These contributions persistently occur around the ENZ frequency of the film irrespective of the interfilm separation. We further associate the ENZ modes with a striking thickness dependence of a proposed figure of merit (FOM) for conductive thin films, suggesting that the motion of objects induced by Casimir interactions is boosted for deeply nanoscale sizes. Our results shed light on the correlation between special electromagnetic modes and the vacuum fluctuation-induced force as well as the resulting mechanical properties of ultrathin ENZ materials, which may create new opportunities for engineering the motion of ultrasmall objects in nanomechanical systems.

4.
Opt Express ; 30(20): 36500-36508, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258577

RESUMO

Electromagnetic perfect absorption entails impedance-matching between two adjacent media, which is often achieved through the excitation of photonic/plasmonic resonances in structures such as metamaterials. Recently, super absorption was achieved using a simple bi-layer configuration consisting of ultrathin lossy films. These structures have drawn rising interest due to the structural simplicity and mechanical stability; however, the relatively broadband absorption and weak angular dependence can limit its versatility in many technologies. In this work, we describe an alternative structure based on an ultrathin semiconducting (Ge) grating that features a dual-band near-perfect resonant absorption (99.4%) in the visible regime. An angular-insensitive resonance is attributed to strong interference inside the ultrathin grating layer, akin to the resonance obtained with a single ultrathin planar film, while an angular-sensitive resonance shows a much narrower linewidth and results from the diffraction-induced surface mode coupling. With an appropriately designed grating period and thickness, strong coherent coupling between the two modes can give rise to an avoided-crossing in the absorption spectra. Further, the angular-insensitive resonance can be tuned separately from the angularly sensitive one, yielding a single narrow-banded absorption in the visible regime and a broadband absorption resonance that is pushed into the near-infrared (NIR). Our design creates new opportunities for ultra-thin and ultra-compact photonic devices for application in technologies including image sensing, structural color-filtering and coherent thermal light-emission.

5.
Opt Express ; 30(12): 21977-21989, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224907

RESUMO

Optical switchability is an important functionality for photonic devices, which allows them to accommodate a wide range of applications. One way to achieve this switchability is to utilize the reversible and tunable optical changes of metal hydrides. When exposed to H2 gas, certain metals go through dramatic changes in optical properties as hydrogen atoms expand the lattice spacing. In this paper, we propose a switchable absorption device consisting of a Pd-capped Mg thin film deposited onto a near-zero-index substrate. By utilizing Mg's extreme optical changes upon hydrogenation and combining it with the high optical contrast of the near-zero-index substrate, we can create a device that is fully switchable from a highly reflective state to a broadband absorbing state. When modeling the substrate as a Drude material with a plasma wavelength of 600 nm, we calculate an absorption change of > 70% from 650-1230 nm, with a peak total absorption of 78% at 905 nm. We experimentally demonstrate this effect using 25 nm of Mg with a 3 nm Pd capping layer deposited onto an ITO-coated glass substrate. This device achieves an absorption change of 76% at 1335 nm illumination, with a maximum absorption of 93% in the hydride state, utilizing ITO's near-zero-index region in the near-infrared. By tuning the near-zero-index region of the substrate, this effect can be extended from the visible through the infrared.

6.
Opt Express ; 28(22): 33528-33537, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33115013

RESUMO

The plasmon resonance of a structure is primarily dictated by its optical properties and geometry, which can be modified to enable hot-carrier photodetectors with superior performance. Recently, metal alloys have played a prominent role in tuning the resonance of plasmonic structures through chemical composition engineering. However, it has been unclear how alloying modifies the time dynamics of the generated hot-carriers. In this work, we elucidate the role of chemical composition on the relaxation time of hot-carriers for the archetypal AuxAg1-x thin film system. Through time-resolved optical spectroscopy measurements in the visible wavelength range, we measure composition-dependent relaxation times that vary up to 8× for constant pump fluency. Surprisingly, we find that the addition of 2% of Ag into Au films can increase the hot-carrier lifetime by approximately 35% under fixed fluence, as a result of a decrease in optical loss. Further, the relaxation time is found to be inversely proportional to the imaginary part of the permittivity. Our results indicate that alloying is a promising approach to effectively control hot-carrier relaxation time in metals.

7.
Phys Rev Lett ; 120(4): 040401, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437434

RESUMO

Complex interaction geometries offer a unique opportunity to modify the strength and sign of the Casimir force. However, measurements have traditionally been limited to sphere-plate or plate-plate configurations. Prior attempts to extend measurements to different geometries relied on either nanofabrication techniques that are limited to only a few materials or slight modifications of the sphere-plate geometry due to alignment difficulties of more intricate configurations. Here, we overcome this obstacle to present measurements of the Casimir force between two gold spheres using an atomic force microscope. Force measurements are alternated with topographical scans in the x-y plane to maintain alignment of the two spheres to within approximately 400 nm (∼1% of the sphere radii). Our experimental results are consistent with Lifshitz's theory using the proximity force approximation (PFA), and corrections to the PFA are bounded using nine sphere-sphere and three sphere-plate measurements with spheres of varying radii.

8.
Nano Lett ; 17(4): 2554-2560, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28226210

RESUMO

Hybrid organic-inorganic perovskites based on methylammonium lead (MAPbI3) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must be understood and controlled. While the macroscopic characterization of the devices as a function of time is very informative, a nanoscale identification of their real-time local optoelectronic response is still missing. Here, we implement a four-dimensional imaging method through illuminated heterodyne Kelvin probe force microscopy to spatially (<50 nm) and temporally (16 s/scan) resolve the voltage of perovskite solar cells in a low relative humidity environment. Local open-circuit voltage (Voc) images show nanoscale sites with voltage variation >300 mV under 1-sun illumination. Surprisingly, regions of voltage that relax in seconds and after several minutes consistently coexist. Time-dependent changes of the local Voc are likely due to intragrain ion migration and are reversible at low injection level. These results show for the first time the real-time transient behavior of the Voc in perovskite solar cells at the nanoscale. Understanding and controlling the light-induced electrical changes that affect device performance are critical to the further development of stable perovskite-based solar technologies.

9.
Phys Rev Lett ; 119(18): 183001, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219602

RESUMO

We investigate two effects that lead to a surprising increase in the calculated Casimir-Lifshitz torque between anisotropic, planar, semi-infinite slabs. Retardation effects, which account for the finite speed of light, are generally assumed to decrease the strength of Casimir-Lifshitz interactions. However, the nonretarded approximation underestimates the Casimir-Lifshitz torque at small separations by as much as an order of magnitude. Also, Casimir-Lifshitz forces are typically weakened with the insertion of an intervening dielectric. However, a dielectric medium can increase the short-range Casimir-Lifshitz torque by as much as a factor of 2. The combined effects of retardation and an intervening dielectric dramatically enhance the Casimir-Lifshitz torque in the experimentally accessible regime and should not be neglected in calculation or experimental design.

10.
Opt Express ; 24(10): A925-34, 2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27409965

RESUMO

We describe high efficiency thin-film InP solar cells that utilize a periodic array of TiO2 nanocylinders. These nanophotonic resonators are found to reduce the solar-weighted average reflectivity of an InP solar cell to ~1.3%, outperforming the best double-layer antireflection coatings. The coupling between Mie scattering resonances and thin-film interference effects accurately describes the optical enhancement provided by the nanocylinders. The spectrally resolved reflectivity and J-V characteristics of the device under AM1.5G illumination are determined via coupled optical and electrical simulations, resulting in a predicted power conversion efficiency > 23%. We conclude that the nanostructured coating reduces reflection without negatively affecting the electronic properties of the InP solar cell by separating the nanostructured optical components from the active layer of the device.

11.
Nanotechnology ; 27(24): 245705, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27159082

RESUMO

Kelvin probe force microscopy (KPFM) adapts an atomic force microscope to measure electric potential on surfaces at nanometer length scales. Here we demonstrate that Heterodyne-KPFM enables scan rates of several frames per minute in air, and concurrently maintains spatial resolution and voltage sensitivity comparable to frequency-modulation KPFM, the current spatial resolution standard. Two common classes of topography-coupled artifacts are shown to be avoidable with H-KPFM. A second implementation of H-KPFM is also introduced, in which the voltage signal is amplified by the first cantilever resonance for enhanced sensitivity. The enhanced temporal resolution of H-KPFM can enable the imaging of many dynamic processes, such as such as electrochromic switching, phase transitions, and device degredation (battery, solar, etc), which take place over seconds to minutes and involve changes in electric potential at nanometer lengths.

12.
Nano Lett ; 15(1): 147-52, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25436991

RESUMO

When high-energy photons are absorbed in a semiconductor or metal, electrons and holes are generated with excess kinetic energy, so-called hot carriers. This extra energy is dissipated, for example, by phonon emission, which results in sample heating. Recovery of hot carriers is important for detectors, sensors, and power convertors; however, the design and implementation of these devices is difficult due to strict requirements on the device geometry, angle of illumination, and incident photon wavelength. Here, we present for the first time a simple, angle-independent device based on transparent conducting electrodes that allows for the generation and collection of hot carriers. We show experimental photocurrent generation from both monochromatic and broadband light sources, show uniform absorption for incident illumination at up to 60° from the surface normal, and find an expected open-circuit voltage in the range 1.5-3.0 V. Under solar illumination, the device is 1 order of magnitude more efficient than previous metal-insulator-metal designs, and power conversion efficiencies >10% are predicted with optimized structures. This approach opens the door to new hot carrier collection devices and detectors based on transparent conducting electrodes.

13.
Opt Express ; 23(19): A1120-8, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406742

RESUMO

The method of detailed balance, introduced by Shockley and Queisser, is often used to find an upper theoretical limit for the efficiency of semiconductor pn-junction based photovoltaics. Typically the solar cell is assumed to be at an ambient temperature of 300 K. In this paper, we describe and analyze the use of radiative cooling techniques to lower the solar cell temperature below the ambient to surpass the detailed balance limit for a cell in contact with an ideal heat sink. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that our proposed structure yields an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for solar cells in an extraterrestrial environment in near-earth orbit.

14.
Opt Express ; 22 Suppl 2: A259-67, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922234

RESUMO

We propose a polymer photovoltaic device with a new scattering mechanism based on photon absorption and re-emission in a quantum dot layer. A matrix of aluminum nanorods with optimized radius and period are used to modify the coupling of light emitted from the quantum dots into the polymer layer. Our analysis shows that this architecture is capable of increasing the absorption of an ordinary polymer photovoltaic device by 28%.

15.
Opt Express ; 22(5): A259-67, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24800281

RESUMO

We propose a polymer photovoltaic device with a new scattering mechanism based on photon absorption and re-emission in a quantum dot layer. A matrix of aluminum nanorods with optimized radius and period are used to modify the coupling of light emitted from the quantum dots into the polymer layer. Our analysis shows that this architecture is capable of increasing the absorption of an ordinary polymer photovoltaic device by 28%.

16.
Nano Lett ; 12(1): 214-8, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22149061

RESUMO

In 1982, Yablonovitch proposed a thermodynamic limit on light trapping within homogeneous semiconductor slabs, which implied a minimum thickness needed to fully absorb the solar spectrum. However, this limit is valid for geometrical optics but not for a new generation of subwavelength solar absorbers such as ultrathin or inhomogeneously structured cells, wire-based cells, photonic crystal-based cells, and plasmonic cells. Here we show that the key to exceeding the conventional ray optic or so-called ergodic light trapping limit is in designing an elevated local density of optical states (LDOS) for the absorber. Moreover, for any semiconductor we show that it is always possible to exceed the ray optic light trapping limit and use these principles to design a number of new solar absorbers with the key feature of having an elevated LDOS within the absorbing region of the device, opening new avenues for solar cell design and cost reduction.


Assuntos
Fontes de Energia Elétrica , Luz , Modelos Teóricos , Nanotecnologia/instrumentação , Semicondutores , Energia Solar , Simulação por Computador , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Espalhamento de Radiação
17.
Nano Lett ; 12(11): 6005-11, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23110584

RESUMO

Three-dimensional (3D) structures such as nanowires, nanotubes, and nanorods have the potential to increase surface area, reduce light reflection, and shorten charge carrier transport distances. The assembly of such structures thus holds great promise for enhancing photoelectrochemical solar cell efficiency. In this study, genetically modified Tobacco mosaic virus (TMV1cys) was used to form self-assembling 3D nanorod current collectors and low light-reflecting surfaces. Photoactive CuO was subsequently deposited by sputtering onto these patterned nanostructures, and these structures were examined for photocurrent activity. CuO thicknesses of 520 nm on TMV1cys patterned current collectors produced the highest photocurrent density of 3.15 mA/cm(2) yet reported for a similar sized CuO system. Reflectivity measurements are in agreement with full-wave electromagnetic simulations, which can be used as a design tool for optimizing the CuO system. Thus the combined effects of reducing charge carrier transport distance, increasing surface area, and the suppression of light reflection make these virus-templated surfaces ideal for photoelectrochemical applications.


Assuntos
Eletroquímica/métodos , Fotoquímica/métodos , Simulação por Computador , Cobre/química , Radiação Eletromagnética , Imageamento Tridimensional/métodos , Luz , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Nanoestruturas/química , Nanotubos/química , Propriedades de Superfície , Temperatura , Fatores de Tempo , Vírus do Mosaico do Tabaco/metabolismo , Difração de Raios X
18.
ACS Appl Mater Interfaces ; 15(1): 1010-1020, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36566453

RESUMO

Mg shows great potential as a metal hydride for switchable optical response and hydrogen detection due to its ability to stably incorporate significant amounts of hydrogen into its lattice. However, this thermodynamic stability makes hydrogen removal difficult. By alloying Mg with secondary elements, the hydrogenation kinetics can be increased. Here, we report the dynamic optical, loading, and stress properties of three Mg alloy systems (Mg-Al, Mg-Ti, and Mg-Ni) and present several novel phenomena and three distinct device designs that can be achieved with them. We find that these materials all have large deviations in refractive index when exposed to H2 gas, with a wide range of potential properties in the hydride state. The magnitude and sign of the optical property change for each of the alloys are similar, but the differences have dramatic effects on device design. We show that Mg-Ti alloys perform well as both switchable windows and broadband switchable light absorbers, where Mg0.87Ti0.13 and Mg0.85Ti0.15 can achieve a 40% transmission change as a switchable window and a 55% absorption change as a switchable solar absorber. We also show how different alloys can be used for dynamically tunable color filters, where both the reflected and transmitted colors depend on the hydrogenation state. We demonstrate how small changes in the alloy composition (e.g., with Mg-Ni) can lead to dramatically different color responses upon hydrogenation (red-shifting vs blue-shifting of the resonance). Our results establish the potential for these Mg alloys in a variety of applications relating to hydrogen storage, detection, and optical devices, which are necessary for a future hydrogen economy.

19.
ACS Appl Opt Mater ; 1(9): 1615-1619, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37772200

RESUMO

Many technological applications in photonics require devices to function reliably under extreme conditions, including high temperatures. To this end, materials and structures with thermally stable optical properties are indispensable. State-of-the-art thermal photonic devices based on nanostructures suffer from severe surface diffusion-induced degradation, and the operational temperatures are often restricted. Here, we report on a thermo-optically stable superabsorber composed of bilayer refractory dielectric materials. The device features an average absorptivity ∼95% over >500 nm bandwidth in the near-infrared regime, with minimal temperature dependence up to 1500 °C. Our results demonstrate an alternative pathway to achieve high-temperature thermo-optically stable photonic devices.

20.
Nano Lett ; 11(6): 2195-201, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-20945845

RESUMO

We describe an ultrathin solar cell architecture that combines the benefits of both plasmonic photovoltaics and traditional antireflection coatings. Spatially resolved electron generation rates are used to determine the total integrated current improvement under AM1.5G solar illumination, which can reach a factor of 1.8. The frequency-dependent absorption is found to strongly correlate with the occupation of optical modes within the structure, and the improved absorption is mainly attributed to improved coupling to guided modes rather than localized resonant modes.


Assuntos
Fontes de Energia Elétrica , Metais/química , Nanotecnologia/instrumentação , Refratometria/instrumentação , Energia Solar , Porosidade , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA