Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
BMC Plant Biol ; 15: 296, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26691165

RESUMO

BACKGROUND: Recent studies have reported agronomically useful ectopic effects for recombinant protease inhibitors expressed in leaves of transgenic plants, including improved tolerance to abiotic stress conditions and partial resistance to necrotrophic pathogens. Here we assessed the effects of these proteins on the post-dormancy sprouting of storage organs, using as a model potato tubers expressing cysteine protease inhibitors of the cystatin protein superfamily. RESULTS: Sprout emergence and distribution, soluble proteins, starch and soluble sugars were monitored in tubers of cereal cystatin-expressing clones stored for several months at 4 °C. Cystatin expression had a strong repressing effect on sprout growth, associated with an apparent loss of apical dominance and an increased number of small buds at the skin surface. Soluble protein content remained high for up to 48 weeks in cystatin-expressing tubers compared to control (untransformed) tubers, likely explained by a significant stabilization of the major storage protein patatin, decreased hydrolysis of the endogenous protease inhibitor multicystatin and low cystatin-sensitive cysteine protease activity in tuber tissue. Starch content decreased after several months in cystatin-expressing tubers but remained higher than in control tubers, unlike sucrose showing a slower accumulation in the transgenics. Plantlet emergence, storage protein processing and height of growing plants showed similar time-course patterns for control and transgenic tubers, except for a systematic delay of 2 or 3 d in the latter group likely due to limited sprout size at sowing. CONCLUSIONS: Our data point overall to the onset of metabolic interference effects for cereal cystatins in sprouting potato tubers. They suggest, in practice, the potential of endogenous cysteine proteases as relevant targets for the development of potato varieties with longer storage capabilities.


Assuntos
Cistatinas/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Solanum tuberosum/genética , Zea mays/genética , Cistatinas/metabolismo , Germinação , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Zea mays/metabolismo
2.
BMC Plant Biol ; 12: 198, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23116303

RESUMO

BACKGROUND: Studies reported unintended pleiotropic effects for a number of pesticidal proteins ectopically expressed in transgenic crops, but the nature and significance of such effects in planta remain poorly understood. Here we assessed the effects of corn cystatin II (CCII), a potent inhibitor of C1A cysteine (Cys) proteases considered for insect and pathogen control, on the leaf proteome and pathogen resistance status of potato lines constitutively expressing this protein. RESULTS: The leaf proteome of lines accumulating CCII at different levels was resolved by 2-dimensional gel electrophoresis and compared with the leaf proteome of a control (parental) line. Out of ca. 700 proteins monitored on 2-D gels, 23 were significantly up- or downregulated in CCII-expressing leaves, including 14 proteins detected de novo or up-regulated by more than five-fold compared to the control. Most up-regulated proteins were abiotic or biotic stress-responsive proteins, including different secretory peroxidases, wound inducible protease inhibitors and pathogenesis-related proteins. Accordingly, infection of leaf tissues by the fungal necrotroph Botryris cinerea was prevented in CCII-expressing plants, despite a null impact of CCII on growth of this pathogen and the absence of extracellular Cys protease targets for the inhibitor. CONCLUSIONS: These data point to the onset of pleiotropic effects altering the leaf proteome in transgenic plants expressing recombinant protease inhibitors. They also show the potential of these proteins as ectopic modulators of stress responses in planta, useful to engineer biotic or abiotic stress tolerance in crop plants of economic significance.


Assuntos
Cistatinas/metabolismo , Grão Comestível/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Botrytis/efeitos dos fármacos , Botrytis/enzimologia , Botrytis/crescimento & desenvolvimento , Cromatografia Líquida , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Eletroforese em Gel Bidimensional , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/enzimologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Pleiotropia Genética/efeitos dos fármacos , Espectrometria de Massas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Inibidores de Proteases/farmacologia , Proteoma/metabolismo , Solanum tuberosum/efeitos dos fármacos , Solanum tuberosum/microbiologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
3.
J Exp Bot ; 61(15): 4169-83, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20581122

RESUMO

Protease inhibitors are a promising complement to Bt toxins for the development of insect-resistant transgenic crops, but their limited specificity against proteolytic enzymes and the ubiquity of protease-dependent processes in living organisms raise questions about their eventual non-target effects in agroecosystems. After a brief overview of the main factors driving the impacts of insect-resistant transgenic crops on non-target organisms, the possible effects of protease inhibitors are discussed from a multitrophic perspective, taking into account not only the target herbivore proteases but also the proteases of other organisms found along the trophic chain, including the plant itself. Major progress has been achieved in recent years towards the design of highly potent broad-spectrum inhibitors and the field deployment of protease inhibitor-expressing transgenic plants resistant to major herbivore pests. A thorough assessment of the current literature suggests that, whereas the non-specific inhibitory effects of recombinant protease inhibitors in plant food webs could often be negligible and their 'unintended' pleiotropic effects in planta of potential agronomic value, the innocuity of these proteins might always remain an issue to be assessed empirically, on a case-by-case basis.


Assuntos
Comportamento Alimentar/efeitos dos fármacos , Insetos/efeitos dos fármacos , Insetos/fisiologia , Controle Biológico de Vetores , Inibidores de Proteases/farmacologia , Proteínas Recombinantes/farmacologia , Animais , Plantas Geneticamente Modificadas
4.
Sci Rep ; 6: 38827, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27958307

RESUMO

Studies have reported the potential of protease inhibitors to engineer insect resistance in transgenic plants but the general usefulness of this approach in crop protection still remains to be established. Insects have evolved strategies to cope with dietary protease inhibitors, such as the use of proteases recalcitrant to inhibition, that often make the selection of effective inhibitors very challenging. Here, we used a functional proteomics approach for the 'capture' of Cys protease targets in crude protein extracts as a tool to identify promising cystatins for plant improvement. Two cystatins found to differ in their efficiency to capture Cys proteases of the coleopteran pest Leptinotarsa decemlineata also differed in their usefulness to produce transgenic potato lines resistant to this insect. Plants expressing the most potent cystatin at high level had a strong repressing effect on larval growth and leaf intake, while plants expressing the weakest cystatin showed no effect on both two parameters compared to untransformed parental line used for genetic transformation. Our data underline the relevance of considering the whole range of possible protease targets when selecting an inhibitor for plant pest control. They also confirm the feasibility of developing cystatin-expressing transgenics resistant to a major pest of potato.


Assuntos
Cistatinas/isolamento & purificação , Inibidores de Cisteína Proteinase/isolamento & purificação , Controle de Insetos , Inseticidas , Animais , Besouros , Estrutura Terciária de Proteína , Proteômica , Solanum tuberosum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA