Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 58(9): 1295-1310, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726069

RESUMO

Escherichia coli RecA (EcRecA) forms discrete foci that cluster at cell poles during normal growth, which are redistributed along the filamented cell axis upon induction of the SOS response. The plasma membrane is thought to act as a scaffold for EcRecA foci, thereby playing an important role in RecA-dependent homologous recombination. In addition, in vivo and in vitro studies demonstrate that EcRecA binds strongly to the anionic phospholipids. However, there have been almost no data on the association of mycobacterial RecA proteins with the plasma membrane and the effects of membrane components on their function. Here, we show that mycobacterial RecA proteins specifically interact with phosphatidylinositol and cardiolipin among other anionic phospholipids; however, they had no effect on the ability of RecA proteins to bind single-stranded DNA. Interestingly, phosphatidylinositol and cardiolipin impede the DNA-dependent ATPase activity of RecA proteins, although ATP binding is not affected. Furthermore, the ability of RecA proteins to promote DNA strand exchange is not affected by anionic phospholipids. Strikingly, anionic phospholipids suppress the RecA-stimulated autocatalytic cleavage of the LexA repressor. The Mycobacterium smegmatis RecA foci localize to the cell poles during normal growth, and these structures disassemble and reassemble into several foci along the cell after the induction of DNA damage. Taken together, these data support the notion that the interaction of RecA with cardiolipin and phosphatidylinositol, the major anionic phospholipids of the mycobacterial plasma membrane, may be physiologically relevant, as they provide a scaffold for RecA storage and may regulate recombinational DNA repair and the SOS response.


Assuntos
Membrana Celular/metabolismo , Mycobacterium smegmatis/metabolismo , Fosfolipídeos/metabolismo , Recombinases Rec A/metabolismo , Trifosfato de Adenosina/metabolismo , Ânions/química , Ânions/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cardiolipinas/química , Cardiolipinas/metabolismo , Membrana Celular/química , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Difusão Dinâmica da Luz , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Polarização de Fluorescência , Lipossomos/química , Lipossomos/metabolismo , Mycobacterium smegmatis/química , Fosfatidilinositóis/química , Fosfatidilinositóis/metabolismo , Fosfolipídeos/química , Recombinases Rec A/química , Recombinases Rec A/genética , Resposta SOS em Genética , Serina Endopeptidases/metabolismo
2.
Mol Microbiol ; 109(5): 600-614, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29873124

RESUMO

Cyclic di-GMP and cyclic di-AMP are second messengers produced by a wide variety of bacteria. They influence bacterial cell survival, biofilm formation, virulence and bacteria-host interactions. However, many of their cellular targets and biological effects are yet to be determined. A chemical proteomics approach revealed that Mycobacterium smegmatis RecA (MsRecA) possesses a high-affinity cyclic di-AMP binding activity. We further demonstrate that both cyclic di-AMP and cyclic di-GMP bind specifically to the C-terminal motif of MsRecA and Mycobacterium tuberculosis RecA (MtRecA). Escherichia coli RecA (EcRecA) was devoid of cyclic di-AMP binding but have cyclic di-GMP binding activity. Notably, cyclic di-AMP attenuates the DNA strand exchange promoted by MsRecA as well as MtRecA through the disassembly of RecA nucleoprotein filaments. However, the structure and DNA strand exchange activity of EcRecA nucleoprotein filaments remain largely unaffected. Furthermore, M. smegmatis ΔdisA cells were found to have undetectable RecA levels due to the translational repression of recA mRNA. Consequently, the ΔdisA mutant exhibited enhanced sensitivity to DNA-damaging agents. Altogether, this study points out the importance of sequence diversity among recA genes, the role(s) of cyclic di-AMP and reveals a new mode of negative regulation of recA gene expression, DNA repair and homologous recombination in mycobacteria.


Assuntos
AMP Cíclico/fisiologia , Proteínas de Ligação a DNA/metabolismo , Mycobacterium smegmatis/fisiologia , Recombinases Rec A/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/fisiologia , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Escherichia coli/fisiologia , Regulação Bacteriana da Expressão Gênica , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/fisiologia , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Recombinases Rec A/genética , Reparo de DNA por Recombinação
3.
Clin Exp Hypertens ; 41(6): 564-570, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30325243

RESUMO

Aim: Role of TRPV4 channel in regulation of endothelial function in the carotid artery in deoxycorticosterone acetate (DOCA) model of hypertension in rat was studied. Methods: 8-10 weeks old albino Wistar rats divided into three groups namely Control, UNX and hypertensive animals. Vascular smooth muscle response was studied in isolated carotid artery of rat with acetylcholine, sodium nitroprusside, GSK1016790A (GSK) in presence and absence of L-NAME and indomethacin. Results: At the end of the 6th week, the mean systolic blood pressure was increased in DOCA-treated hypertensive rats (166 ± 8 mm Hg) compared to Control and UNX (125 ± 5 mm Hg). ACh (10-9 to 10-5 M) produced almost 100% relaxation in Control (Emax = 97.48 ± 1.06 %) and UNX animals (Emax = 93.16 ± 2.33 %) which was attenuated in DOCA-treated hypertensive animals (Emax = 70.85 ± 1.65 %). No significant changes seen in SNP (10-12 to 10-5 M) induced relaxation. GSK1016790A (10-12 to 10-7 M)-mediated relaxation was significantly attenuated in DOCA-treated hypertensive animals (Emax = 25.58 ± 13.60%) compared to the control (Emax = 80.59 ± 6.86%) and UNX (Emax = 87.32 ± 2.01%) animals. L-NAME (10-4 M) potently blocked GSK-induced relaxation, and a contractile response to GSK was observed in presence of L-NAME in all the three groups of animals which was sensitive to indomethacin (10-5 M). Conclusion: TRPV4 may regulate the vascular tone of rat carotid artery through an attenuated NO pathway and stimulation of the release of contractile prostanoids in the DOCA hypertensive rats.


Assuntos
Pressão Sanguínea/fisiologia , Artéria Carótida Primitiva/fisiopatologia , Endotélio Vascular/fisiopatologia , Hipertensão/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Canais de Cátion TRPV/metabolismo , Vasoconstrição/fisiologia , Animais , Artéria Carótida Primitiva/metabolismo , Acetato de Desoxicorticosterona/toxicidade , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Wistar
4.
J Biol Chem ; 292(33): 13853-13866, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28642366

RESUMO

Elucidation of the function of synaptonemal complex (SC) in Saccharomyces cerevisiae has mainly focused on in vivo analysis of recombination-defective meiotic mutants. Consequently, significant gaps remain in the mechanistic understanding of the activities of various SC proteins and the functional relationships among them. S. cerevisiae Hop1 and Red1 are essential structural components of the SC axial/lateral elements. Previous studies have demonstrated that Hop1 is a structure-selective DNA-binding protein exhibiting high affinity for the Holliday junction and promoting DNA bridging, condensation, and pairing between double-stranded DNA molecules. However, the exact mode of action of Red1 remains unclear, although it is known to interact with Hop1 and to suppress the spore viability defects of hop1 mutant alleles. Here, we report the purification and functional characterization of the full-length Red1 protein. Our results revealed that Red1 forms a stable complex with Hop1 in vitro and provided quantitative insights into their physical interactions. Mechanistically, Red1 preferentially associated with the Holliday junction and 3-way junction rather than with single- or double-stranded DNA with overhangs. Although Hop1 and Red1 exhibited similar binding affinities toward several DNA substrates, the two proteins displayed some significant differences. Notably, Red1, by itself, lacked DNA-pairing ability; however, it potentiated Hop1-promoted intermolecular pairing between double-stranded DNA molecules. Moreover, Red1 exhibited nonhomologous DNA end-joining activity, thus revealing an unexpected role for Red1 in recombination-based DNA repair. Collectively, this study presents the first direct insights into Red1's mode of action and into the mechanism underlying its role in chromosome synapsis and recombination.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/agonistas , Proteínas de Saccharomyces cerevisiae/agonistas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Complexo Sinaptonêmico/metabolismo , Pareamento de Bases , Pareamento Cromossômico , DNA Circular/química , DNA Circular/metabolismo , DNA Cruciforme/química , DNA Cruciforme/metabolismo , DNA Fúngico/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Cinética , Microscopia de Força Atômica , Mutação , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Ressonância de Plasmônio de Superfície , Complexo Sinaptonêmico/química , Complexo Sinaptonêmico/genética
5.
Chembiochem ; 19(10): 1078-1087, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29485247

RESUMO

The polypurine/polypyrimidine-rich sequences within the promoters (PI and PII) of human acetyl coenzyme A (CoA) carboxylase 1 (ACC1) gene play a vital role in determining hormone- or diet-inducible expression of ACC1. PI and PII contain consecutive runs of three and three to five G/C base pairs, respectively. In a previous study, G-rich DNA sequences of human ACC1 PI and PII were found to fold into G-quadruplex structures; these consequently acted as strong barriers to transcription and DNA replication. Typically, stretches of C-rich sequences that coexist with stretches of guanines have the capacity to form another four-stranded secondary structure known as an i-motif. However, studies on the i-motif structure are limited and its functional significance is unclear. In the current study, through the use of a combination of different techniques, it is demonstrated that C-rich single-stranded DNA derived from ACC1 PI and PII form intramolecular i-motif structures and affect normal DNA metabolic processes. Additionally, the C-rich strands of PI and PII in duplex DNA adopt the i-motif conformation in crowded solution environments at neutral pH. Notably, the i-motif-forming sequences of PI and PII suppressed luciferase gene transcription in HeLa cells. Furthermore, substitution of a nucleotide sequence that has no potential to form the i-motif structure increases luciferase gene expression in HeLa cells. These results support the idea that C-rich sequences within ACC1 PI and PII can form intramolecular i-motif structures, cause suppression of transcription, and thus reveal the functional significance of C-rich sequences in the regulation of ACC1 gene expression.


Assuntos
Acetil-CoA Carboxilase/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Pareamento de Bases , Sequência de Bases , Citosina/química , DNA/química , DNA/genética , Quadruplex G , Células HeLa , Humanos , Conformação de Ácido Nucleico
6.
Biophys J ; 112(10): 2056-2074, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28538144

RESUMO

A plethora of evidence suggests that different types of DNA quadruplexes are widely present in the genome of all organisms. The existence of a growing number of proteins that selectively bind and/or process these structures underscores their biological relevance. Moreover, G-quadruplex DNA has been implicated in the alignment of four sister chromatids by forming parallel guanine quadruplexes during meiosis; however, the underlying mechanism is not well defined. Here we show that a G/C-rich motif associated with a meiosis-specific DNA double-strand break (DSB) in Saccharomyces cerevisiae folds into G-quadruplex, and the C-rich sequence complementary to the G-rich sequence forms an i-motif. The presence of G-quadruplex or i-motif structures upstream of the green fluorescent protein-coding sequence markedly reduces the levels of gfp mRNA expression in S. cerevisiae cells, with a concomitant decrease in green fluorescent protein abundance, and blocks primer extension by DNA polymerase, thereby demonstrating the functional significance of these structures. Surprisingly, although S. cerevisiae Hop1, a component of synaptonemal complex axial/lateral elements, exhibits strong affinity to G-quadruplex DNA, it displays a much weaker affinity for the i-motif structure. However, the Hop1 C-terminal but not the N-terminal domain possesses strong i-motif binding activity, implying that the C-terminal domain has a distinct substrate specificity. Additionally, we found that Hop1 promotes intermolecular pairing between G/C-rich DNA segments associated with a meiosis-specific DSB site. Our results support the idea that the G/C-rich motifs associated with meiosis-specific DSBs fold into intramolecular G-quadruplex and i-motif structures, both in vitro and in vivo, thus revealing an important link between non-B form DNA structures and Hop1 in meiotic chromosome synapsis and recombination.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose/genética , Saccharomyces cerevisiae/genética , Dicroísmo Circular , DNA de Cadeia Simples , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Escherichia coli , Quadruplex G , Sequência Rica em GC , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Meiose/fisiologia , Microscopia Confocal , Mutação , Ressonância Magnética Nuclear Biomolecular , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Bacteriol ; 199(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28696279

RESUMO

The integration host factor of Mycobacterium tuberculosis (mIHF) consists of a single polypeptide chain, the product of the ihf gene. We previously revealed that mIHF is a novel member of a new class of nucleoid-associated proteins that have important roles in DNA damage response, nucleoid compaction, and integrative recombination. The mIHF contains a region of 86 amino acids at its N terminus, absent from both α- and ß-subunits of Escherichia coli IHF. However, the functional significance of an extra 86-amino-acid region in the full-length protein remains unknown. Here, we report the structure/function relationship of the DNA-binding and integrative recombination-stimulating activity of mIHF. Deletion mutagenesis showed that an extra 86-amino-acid region at the N terminus is dispensable; the C-terminal region possesses the sequences essential for its known biological functions, including the ability to suppress the sensitivity of E. coli ΔihfA and ΔihfB cells to DNA-damaging agents, DNA binding, DNA multimerization-circularization, and stimulation of phage L5 integrase-catalyzed integrative recombination. Single and double alanine substitutions at positions Arg170 and Arg171, located at the mIHF DNA-binding site, abrogated its capacity to suppress the sensitivity of E. coli ΔihfA and ΔihfB cells to DNA-damaging agents. The variants encoded by these mutant alleles failed to bind DNA and stimulate integrative recombination. Interestingly, the DNA-binding activity of the mIHF-R173A variant remained largely unaffected; however, it was unable to stimulate integrative recombination, thus revealing a separation-of-function allele of mIHF. The functional and structural characterization of this separation-of-function allele of mIHF could reveal previously unknown functions of IHF.IMPORTANCE The integration host factor of Mycobacterium tuberculosis is a novel nucleoid-associated protein. mIHF plays a vital role in DNA damage response, nucleoid compaction, and integrative recombination. Intriguingly, mIHF contains an extra 86-amino-acid region at its N terminus, absent from both α- and ß-subunits of Escherichia coli IHF, whose functional significance is unknown. Furthermore, a triad of arginine residues located at the mIHF-DNA interface have been implicated in a range of its functions. Here, we reveal the roles of N- and C-terminal regions of mIHF and the individual residues in the Arg triad for their ability to provide protection in vivo against DNA damage, bind DNA, and stimulate integrase-catalyzed site-specific recombination.


Assuntos
Aminoácidos/metabolismo , DNA Bacteriano/metabolismo , Instabilidade Genômica , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/metabolismo , Mycobacterium tuberculosis/genética , Recombinação Genética , Aminoácidos/química , Sítios de Ligação , Dano ao DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Integrases/genética , Integrases/metabolismo , Mutagênese , Mycobacterium tuberculosis/fisiologia
8.
Mol Microbiol ; 100(4): 656-74, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26817626

RESUMO

The Mycobacterium tuberculosis genome possesses homologues of the ruvC and yqgF genes that encode putative Holliday junction (HJ) resolvases. However, their gene expression profiles and enzymatic properties have not been experimentally defined. Here we report that expression of ruvC and yqgF is induced in response to DNA damage. Protein-DNA interaction assays with purified M. tuberculosis RuvC (MtRuvC) and YqgF (MtRuvX) revealed that both associate preferentially with HJ DNA, albeit with differing affinities. Although both MtRuvC and MtRuvX cleaved HJ DNA in vitro, the latter displayed robust HJ resolution activity by symmetrically related, paired incisions. MtRuvX showed a higher binding affinity for the HJ structure over other branched recombination and replication intermediates. An MtRuvX(D28N) mutation, eliminating one of the highly conserved catalytic residues in this class of endonucleases, dramatically reduced its ability to cleave HJ DNA. Furthermore, a unique cysteine (C38) fulfils a crucial role in HJ cleavage, consistent with disulfide-bond mediated dimerization being essential for MtRuvX activity. In contrast, E. coli YqgF is monomeric and exhibits no branched DNA binding or cleavage activity. These results fit with a functional modification of YqgF in M. tuberculosis so that it can act as a dimeric HJ resolvase analogous to that of RuvC.


Assuntos
DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/metabolismo , Resolvases de Junção Holliday/metabolismo , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Cisteína , Dano ao DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Genoma Bacteriano , Resolvases de Junção Holliday/genética , Mycobacterium tuberculosis/efeitos da radiação , Multimerização Proteica , Análise de Sequência de DNA , Especificidade por Substrato , Raios Ultravioleta
9.
Bioconjug Chem ; 28(2): 341-352, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28165710

RESUMO

Metal based salen complexes have been considered as an important scaffold toward targeting of DNA structures. In the present work, we have synthesized nickel(II) and palladium(II) salen and salphen complexes by using readily available fluorescein as the backbone to provide an extended aromatic surface. The metal complexes exhibit affinity toward the human telomeric G-quadruplex DNA with promising inhibition of telomerase activity. This has been ascertained by their efficiency in the long term cell proliferation assay which showed significant cancer cell toxicity in the presence of the metal complexes. Confocal microscopy showed cellular internalization followed by localization in the nucleus and mitochondria. Considerable population at the sub-G1 phase of the cell cycle showed cell death via apoptotic pathway.


Assuntos
DNA/química , Fluoresceína/química , Quadruplex G/efeitos dos fármacos , Níquel/química , Compostos Organometálicos/farmacologia , Paládio/química , Telomerase/antagonistas & inibidores , Células A549 , Apoptose/efeitos dos fármacos , DNA/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Etilenodiaminas/química , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Fenilenodiaminas/química
10.
Biochemistry ; 55(41): 5865-5883, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27618337

RESUMO

Much is known about the Escherichia coli nucleotide excision repair (NER) pathway; however, very little is understood about the proteins involved and the molecular mechanism of NER in mycobacteria. In this study, we show that Mycobacterium tuberculosis UvrB (MtUvrB), which exists in solution as a monomer, binds to DNA in a structure-dependent manner. A systematic examination of MtUvrB substrate specificity reveals that it associates preferentially with single-stranded DNA, duplexes with 3' or 5' overhangs, and linear duplex DNA with splayed arms. Whereas E. coli UvrB (EcUvrB) binds weakly to undamaged DNA and has no ATPase activity, MtUvrB possesses intrinsic ATPase activity that is greatly stimulated by both single- and double-stranded DNA. Strikingly, we found that MtUvrB, but not EcUvrB, possesses the DNA unwinding activity characteristic of an ATP-dependent DNA helicase. The helicase activity of MtUvrB proceeds in the 3' to 5' direction and is strongly modulated by a nontranslocating 5' single-stranded tail, indicating that in addition to the translocating strand it also interacts with the 5' end of the substrate. The fraction of DNA unwound by MtUvrB decreases significantly as the length of the duplex increases: it fails to unwind duplexes longer than 70 bp. These results, on one hand, reveal significant mechanistic differences between MtUvrB and EcUvrB and, on the other, support an alternative role for UvrB in the processing of key DNA replication intermediates. Altogether, our findings provide insights into the catalytic functions of UvrB and lay the foundation for further understanding of the NER pathway in M. tuberculosis.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , DNA Helicases/química , Mycobacterium tuberculosis/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Reparo do DNA , Genes Bacterianos , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Conformação Proteica
11.
Biochemistry ; 55(12): 1850-62, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26915388

RESUMO

RecA plays a central role in bacterial DNA repair, homologous recombination, and restoration of stalled replication forks by virtue of its active extended nucleoprotein filament. Binding of ATP and its subsequent recognition by the carboxamide group of a highly conserved glutamine (Gln196 in MsRecA) have been implicated in the formation of active RecA nucleoprotein filaments. Although the mechanism of ATP-dependent structural transitions in RecA has been proposed on the basis of low-resolution electron microscopic reconstructions, the precise sequence of events that constitute these transitions is poorly understood. On the basis of biochemical and crystallographic analyses of MsRecA variants carrying mutations in highly conserved Gln196 and Arg198 residues, we propose that the disposition of the interprotomer interface is the structural basis of allosteric activation of RecA. Furthermore, this study accounts for the contributions of several conserved amino acids to ATP hydrolysis and to the transition from collapsed to extended filament forms in Mycobacterium smegmatis RecA (MsRecA). In addition to their role in the inactive compressed state, the study reveals a role for Gln196 and Arg198 along with Phe219 in ATP hydrolysis in the active extended nucleoprotein filament. Finally, our data suggest that the primary, but not secondary, nucleotide binding site in MsRecA isomerizes into the ATP binding site present in the extended nucleoprotein filament.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Modelos Moleculares , Mycobacterium smegmatis , Nucleoproteínas/química , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/fisiologia , Dados de Sequência Molecular , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
12.
J Biol Chem ; 290(19): 11948-68, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25802334

RESUMO

The annotated whole-genome sequence of Mycobacterium tuberculosis revealed the presence of a putative recD gene; however, the biochemical characteristics of its encoded protein product (MtRecD) remain largely unknown. Here, we show that MtRecD exists in solution as a stable homodimer. Protein-DNA binding assays revealed that MtRecD binds efficiently to single-stranded DNA and linear duplexes containing 5' overhangs relative to the 3' overhangs but not to blunt-ended duplex. Furthermore, MtRecD bound more robustly to a variety of Y-shaped DNA structures having ≥18-nucleotide overhangs but not to a similar substrate containing 5-nucleotide overhangs. MtRecD formed more salt-tolerant complexes with Y-shaped structures compared with linear duplex having 3' overhangs. The intrinsic ATPase activity of MtRecD was stimulated by single-stranded DNA. Site-specific mutagenesis of Lys-179 in motif I abolished the ATPase activity of MtRecD. Interestingly, although MtRecD-catalyzed unwinding showed a markedly higher preference for duplex substrates with 5' overhangs, it could also catalyze significant unwinding of substrates containing 3' overhangs. These results support the notion that MtRecD is a bipolar helicase with strong 5' → 3' and weak 3' → 5' unwinding activities. The extent of unwinding of Y-shaped DNA structures was ∼3-fold lower compared with duplexes with 5' overhangs. Notably, direct interaction between MtRecD and its cognate RecA led to inhibition of DNA strand exchange promoted by RecA. Altogether, these studies provide the first detailed characterization of MtRecD and present important insights into the type of DNA structure the enzyme is likely to act upon during the processes of DNA repair or homologous recombination.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonuclease V/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Mycobacterium tuberculosis/enzimologia , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Catálise , Clonagem Molecular , DNA Helicases/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/enzimologia , Hidrólise , Microscopia de Força Atômica , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Multimerização Proteica , Recombinação Genética , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
13.
J Biol Chem ; 290(40): 24119-39, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26276393

RESUMO

Aberrant DNA replication, defects in the protection, and restart of stalled replication forks are major causes of genome instability in all organisms. Replication fork reversal is emerging as an evolutionarily conserved physiological response for restart of stalled forks. Escherichia coli RecG, RuvAB, and RecA proteins have been shown to reverse the model replication fork structures in vitro. However, the pathways and the mechanisms by which Mycobacterium tuberculosis, a slow growing human pathogen, responds to different types of replication stress and DNA damage are unclear. Here, we show that M. tuberculosis RecG rescues E. coli ΔrecG cells from replicative stress. The purified M. tuberculosis RecG (MtRecG) and RuvAB (MtRuvAB) proteins catalyze fork reversal of model replication fork structures with and without a leading strand single-stranded DNA gap. Interestingly, single-stranded DNA-binding protein suppresses the MtRecG- and MtRuvAB-mediated fork reversal with substrates that contain lagging strand gap. Notably, our comparative studies with fork structures containing template damage and template switching mechanism of lesion bypass reveal that MtRecG but not MtRuvAB or MtRecA is proficient in driving the fork reversal. Finally, unlike MtRuvAB, we find that MtRecG drives efficient reversal of forks when fork structures are tightly bound by protein. These results provide direct evidence and valuable insights into the underlying mechanism of MtRecG-catalyzed replication fork remodeling and restart pathways in vivo.


Assuntos
Proteínas de Bactérias/metabolismo , Replicação do DNA , Mycobacterium tuberculosis/metabolismo , Recombinases Rec A/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , DNA Bacteriano/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Teste de Complementação Genética , Genoma Bacteriano , Instabilidade Genômica , Mutação , Conformação de Ácido Nucleico , Oligonucleotídeos
14.
Biochemistry ; 54(26): 4142-60, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26067376

RESUMO

The annotated whole-genome sequence of Mycobacterium tuberculosis indicated that Rv1388 (Mtihf) likely encodes a putative 20 kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or organization of mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF-duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg170, Arg171, and Arg173, which might be involved in DNA binding, and a conserved proline (P150) in the tight turn. The phenotypic sensitivity of Escherichia coli ΔihfA and ΔihfB strains to UV and methylmethanesulfonate could be complemented with the wild-type Mtihf, but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, bind with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHFαß. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes compaction of DNA into nucleoid-like or higher-order filamentous structures. We hence propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.


Assuntos
DNA/metabolismo , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Sequência de Aminoácidos , DNA/química , Regulação Bacteriana da Expressão Gênica , Humanos , Fatores Hospedeiros de Integração/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Alinhamento de Sequência
15.
J Biol Chem ; 289(49): 34325-40, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25324543

RESUMO

The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ΔihfA and ΔihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHFαß. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.

16.
Org Biomol Chem ; 13(30): 8335-48, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26149178

RESUMO

The development of G-quadruplex (G4) DNA binding small molecules has become an important strategy for selectively targeting cancer cells. Herein, we report the design and evolution of a new kind of carbazole-based benzimidazole dimers for their efficient telomerase inhibition activity. Spectroscopic titrations reveal the ligands high affinity toward the G4 DNA with significantly higher selectivity over duplex-DNA. The electrophoretic mobility shift assay shows that the ligands efficiently promote the formation of G4 DNA even at a lower concentration of the stabilizing K(+) ions. The TRAP-LIG assay demonstrates the ligand's potential telomerase inhibition activity and also establishes that the activity proceeds via G4 DNA stabilization. An efficient nuclear internalization of the ligands in several common cancer cells (HeLa, HT1080, and A549) also enabled differentiation between normal HFF cells in co-cultures of cancer and normal ones. The ligands induce significant apoptotic response and antiproliferative activity toward cancer cells selectively when compared to the normal cells.


Assuntos
Benzimidazóis/química , Carbazóis/química , Dimerização , Inibidores Enzimáticos/farmacologia , Quadruplex G , Telomerase/antagonistas & inibidores , Telômero/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Endocitose/efeitos dos fármacos , Ensaios Enzimáticos , Humanos , Cinética , Ligantes , Simulação de Dinâmica Molecular , Desnaturação de Ácido Nucleico , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Temperatura
17.
Nucleic Acids Res ; 41(2): 924-32, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23221642

RESUMO

In Escherichia coli, the filament of RecA formed on single-stranded DNA (ssDNA) is essential for recombinational DNA repair. Although ssDNA-binding protein (SSB) plays a complicated role in RecA reactions in vivo, much of our understanding of the mechanism is based on RecA binding directly to ssDNA. Here we investigate the role of SSB in the regulation of RecA polymerization on ssDNA, based on the differential force responses of a single 576-nucleotide-long ssDNA associated with RecA and SSB. We find that SSB outcompetes higher concentrations of RecA, resulting in inhibition of RecA nucleation. In addition, we find that pre-formed RecA filaments de-polymerize at low force in an ATP hydrolysis- and SSB-dependent manner. At higher forces, re-polymerization takes place, which displaces SSB from ssDNA. These findings provide a physical picture of the competition between RecA and SSB under tension on the scale of the entire nucleoprotein SSB array, which have broad biological implications particularly with regard to competitive molecular binding.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Recombinases Rec A/metabolismo , Ligação Competitiva , Hidrólise , Nucleoproteínas/metabolismo
18.
Carcinogenesis ; 35(1): 34-45, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24067899

RESUMO

UNLABELLED: Germline mutations in RECQL4 and p53 lead to cancer predisposition syndromes, Rothmund-Thomson syndrome (RTS) and Li-Fraumeni syndrome (LFS), respectively. RECQL4 is essential for the transport of p53 to the mitochondria under unstressed conditions. Here, we show that both RECQL4 and p53 interact with mitochondrial polymerase (PolγA/B2) and regulate its binding to the mitochondrial DNA (mtDNA) control region (D-loop). Both RECQL4 and p53 bind to the exonuclease and polymerase domains of PolγA. Kinetic constants for interactions between PolγA-RECQL4, PolγA-p53 and PolγB-p53 indicate that RECQL4 and p53 are accessory factors for PolγA-PolγB and PolγA-DNA interactions. RECQL4 enhances the binding of PolγA to DNA, thereby potentiating the exonuclease and polymerization activities of PolγA/B2. To investigate whether lack of RECQL4 and p53 results in increased mitochondrial genome instability, resequencing of the entire mitochondrial genome was undertaken from multiple RTS and LFS patient fibroblasts. We found multiple somatic mutations and polymorphisms in both RTS and LFS patient cells. A significant number of mutations and polymorphisms were common between RTS and LFS patients. These changes are associated with either aging and/or cancer, thereby indicating that the phenotypes associated with these syndromes may be due to deregulation of mitochondrial genome stability caused by the lack of RECQL4 and p53. SUMMARY: The biochemical mechanisms by which RECQL4 and p53 affect mtDNA replication have been elucidated. Resequencing of RTS and LFS patients' mitochondrial genome reveals common mutations indicating similar mechanisms of regulation by RECQL4 and p53.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Genoma Mitocondrial/fisiologia , Síndrome de Li-Fraumeni/genética , RecQ Helicases/metabolismo , Síndrome de Rothmund-Thomson/genética , Proteína Supressora de Tumor p53/metabolismo , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Polimerase gama , DNA Mitocondrial/metabolismo , DNA Polimerase Dirigida por DNA/genética , Fibroblastos , Genoma Humano , Instabilidade Genômica , Humanos , Mutação , Polimorfismo Genético , RecQ Helicases/genética , Proteína Supressora de Tumor p53/genética
19.
J Biol Chem ; 288(16): 11273-86, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23443654

RESUMO

Saccharomyces cerevisiae RAD50, MRE11, and XRS2 genes are essential for telomere length maintenance, cell cycle checkpoint signaling, meiotic recombination, and DNA double-stranded break (DSB) repair via nonhomologous end joining and homologous recombination. The DSB repair pathways that draw upon Mre11-Rad50-Xrs2 subunits are complex, so their mechanistic features remain poorly understood. Moreover, the molecular basis of DSB end resection in yeast mre11-nuclease deficient mutants and Mre11 nuclease-independent activation of ATM in mammals remains unknown and adds a new dimension to many unanswered questions about the mechanism of DSB repair. Here, we demonstrate that S. cerevisiae Mre11 (ScMre11) exhibits higher binding affinity for single- over double-stranded DNA and intermediates of recombination and repair and catalyzes robust unwinding of substrates possessing a 3' single-stranded DNA overhang but not of 5' overhangs or blunt-ended DNA fragments. Additional evidence disclosed that ScMre11 nuclease activity is dispensable for its DNA binding and unwinding activity, thus uncovering the molecular basis underlying DSB end processing in mre11 nuclease deficient mutants. Significantly, Rad50, Xrs2, and Sae2 potentiate the DNA unwinding activity of Mre11, thus underscoring functional interaction among the components of DSB end repair machinery. Our results also show that ScMre11 by itself binds to DSB ends, then promotes end bridging of duplex DNA, and directly interacts with Sae2. We discuss the implications of these results in the context of an alternative mechanism for DSB end processing and the generation of single-stranded DNA for DNA repair and homologous recombination.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/fisiologia , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Reparo de DNA por Recombinação/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Endodesoxirribonucleases/genética , Endonucleases/genética , Exodesoxirribonucleases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
J Antimicrob Chemother ; 69(7): 1834-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24722837

RESUMO

OBJECTIVES: In eubacteria, RecA is essential for recombinational DNA repair and for stalled replication forks to resume DNA synthesis. Recent work has implicated a role for RecA in the development of antibiotic resistance in pathogenic bacteria. Consequently, our goal is to identify and characterize small-molecule inhibitors that target RecA both in vitro and in vivo. METHODS: We employed ATPase, DNA strand exchange and LexA cleavage assays to elucidate the inhibitory effects of suramin on Mycobacterium tuberculosis RecA. To gain insights into the mechanism of suramin action, we directly visualized the structure of RecA nucleoprotein filaments by atomic force microscopy. To determine the specificity of suramin action in vivo, we investigated its effect on the SOS response by pull-down and western blot assays as well as for its antibacterial activity. RESULTS: We show that suramin is a potent inhibitor of DNA strand exchange and ATPase activities of bacterial RecA proteins with IC(50) values in the low micromolar range. Additional evidence shows that suramin inhibits RecA-catalysed proteolytic cleavage of the LexA repressor. The mechanism underlying such inhibitory actions of suramin involves its ability to disassemble RecA-single-stranded DNA filaments. Notably, suramin abolished ciprofloxacin-induced recA gene expression and the SOS response and augmented the bactericidal action of ciprofloxacin. CONCLUSIONS: Our findings suggest a strategy to chemically disrupt the vital processes controlled by RecA and hence the promise of small molecules for use against drug-susceptible as well as drug-resistant strains of M. tuberculosis for better infection control and the development of new therapies.


Assuntos
Antituberculosos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Recombinases Rec A/antagonistas & inibidores , Resposta SOS em Genética/efeitos dos fármacos , Suramina/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Descoberta de Drogas , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Inibidores de Proteases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA