Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 11(7): 2725-30, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21612262

RESUMO

Coupled plasmonic/chromophore systems are of interest in applications ranging from fluorescent biosensors to solar photovoltaics and photoelectrochemical cells because near-field coupling to metal nanostructures can dramatically alter the optical performance of nearby materials. We show that CdSe quantum dots (QDs) near single silver nanoprisms can exhibit photoluminescence lifetimes and quantum yields that depend on the excitation wavelength, in apparent violation of the Kasha-Vavilov rule. We attribute the variation in QD lifetime with excitation wavelength to the wavelength-dependent coupling of higher-order plasmon modes to different spatial subpopulations of nearby QDs. At the QD emission wavelength, these subpopulations are coupled to far-field radiation with varying efficiency by the nanoprism dipolar resonance. These results offer an easily accessible new route to design metachromophores with tailored optical properties.


Assuntos
Compostos de Cádmio/química , Nanopartículas/química , Pontos Quânticos , Teoria Quântica , Compostos de Selênio/química , Prata/química , Técnicas Biossensoriais , Nanotecnologia , Tamanho da Partícula , Propriedades de Superfície
2.
Nano Lett ; 10(7): 2598-603, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20503980

RESUMO

The near-field effects of plasmonic optical antennas are being explored in applications ranging from biosensors to solar cells. We demonstrate that photoluminescence emission enhancement from CdSe quantum dots (QDs) can be obtained in the absence of any excitation enhancement near single silver nanoprisms. The spectral dependence of the radiative and nonradiative decay rate of the QDs closely follows the silver nanoparticle plasmon scattering spectrum. Using both experiment and theory we show that, in the absence of excitation enhancement, the ratio of radiative to nonradiative decay rate enhancement is proportional to the silver nanoparticle scattering efficiency. These results provide guidelines both for separating excitation and emission enhancement effects in sensing and device applications and for tailoring emission enhancement effects using plasmonic nanostructures.

3.
ACS Nanosci Au ; 1(1): 6-14, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102118

RESUMO

The Primarily Undergraduate Nanomaterials Cooperative (PUNC) is an organization for research-active faculty studying nanomaterials at Primarily Undergraduate Institutions (PUIs), where undergraduate teaching and research go hand-in-hand. In this perspective, we outline the differences in maintaining an active research group at a PUI compared to an R1 institution. We also discuss the work of PUNC, which focuses on community building, instrument sharing, and facilitating new collaborations. Currently consisting of 37 members from across the United States, PUNC has created an online community consisting of its Web site (nanocooperative.org), a weekly online summer group meeting program for faculty and students, and a Discord server for informal conversations. Additionally, in-person symposia at ACS conferences and PUNC-specific conferences are planned for the future. It is our hope that in the years to come PUNC will be seen as a model organization for community building and research support at primarily undergraduate institutions.

4.
J Am Chem Soc ; 130(47): 15916-26, 2008 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-18983150

RESUMO

We study the effects of patterned surface chemistry on the microscale and nanoscale morphology of solution-processed donor/acceptor polymer-blend films. Focusing on combinations of interest in polymer solar cells, we demonstrate that patterned surface chemistry can be used to tailor the film morphology of blends of semiconducting polymers such as poly-[2-(3,7-dimethyloctyloxy)-5-methoxy-p-phenylenevinylene] (MDMO-PPV), poly-3-hexylthiophene (P3HT), poly[(9,9-dioctylflorenyl-2,7-diyl)-co-benzothiadiazole)] (F8BT), and poly(9,9-dioctylfluorene-co-bis-N,N'-(4-butylphenyl)-bis-N,N'-phenyl-1,4-phenylendiamine) (PFB) with the fullerene derivative, [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM). We present a method for generating patterned, fullerene-terminated monolayers on gold surfaces and use microcontact printing and Dip-Pen Nanolithography (DPN) to pattern alkanethiols with both micro- and nanoscale features. After patterning with fullerenes and other functional groups, we backfill the rest of the surface with a variety of thiols to prepare substrates with periodic variations in surface chemistry. Spin coating polymer:PCBM films onto these substrates, followed by thermal annealing under nitrogen, leads to the formation of structured polymer films. We characterize these films with Atomic Force Microscopy (AFM), Raman spectroscopy, and fluorescence microscopy. The surface patterns are effective in guiding phase separation in all of the polymer:PCBM systems investigated and lead to a rich variety of film morphologies that are inaccessible with unpatterned substrates. We demonstrate our ability to guide pattern formation in films thick enough to be of interest for actual device applications (up to 200 nm in thickness) using feature sizes as small as 100 nm. Finally, we show that the surface chemistry can lead to variations in film morphology on length scales significantly smaller than those used in generating the original surface patterns. The variety of behaviors observed and the wide range of control over polymer morphology achieved at a variety of different length scales have important implications for the development of bulk heterojunction solar cells.


Assuntos
Fulerenos/química , Polímeros/química , Microscopia de Força Atômica , Estrutura Molecular , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Propriedades de Superfície
5.
ACS Appl Mater Interfaces ; 2(3): 863-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20356292

RESUMO

We report the characterization of the frontier orbital energies and interface dipole effects for bare and ligand-capped 3.6 and 6.0 nm diameter CdSe nanocrystals (NC) tethered to smooth gold substrates, using He(I) and He(II) UV photoemission spectroscopy. Changes in the ionization potential (IP) of the NCs and local effective work function of the films were explored as a function of the dipolar nature of the NC capping ligands. The addition of thiol-capping ligands 1-hexanethiol, 1-benzenethiol, and 4-fluorothiophenol to both sizes of NCs produces negligible shifts in energy offset between the high kinetic energy edge of the CdSe NCs and the gold substrate Fermi energy. However, the local vacuum level and IP of the nanocrystal layer are altered by as much as 0.3 eV. We demonstrate the importance of determining both the local vacuum level and the high kinetic energy edge of a tethered NC sample. These studies demonstrate a method that can be used in the future to characterize the frontier orbital energy offsets for modified or unmodified nanocrystalline films, in which the NCs are incorporated into host materials, for applications ranging from photovoltaics to light-emitting diodes.

6.
ACS Nano ; 3(6): 1345-52, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19449837

RESUMO

We use photoluminescence (PL) quenching and photoinduced absorption (PIA) spectroscopy to study charge transfer in bulk heterojunction blends of PbSe quantum dots with the semiconducting polymers poly-3-hexylthiophene (P3HT) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-para-phenylene vinylene] (MDMO-PPV). PIA spectra from the PbSe blends are compared to spectra from similar blends of the polymers with phenyl-C(61)-butyric acid methyl ester (PCBM) and blends with CdSe quantum dots. We find that the MDMO-PPV PL is quenched, and the PL lifetime is shortened upon addition of PbSe quantum dots, while the PL of the P3HT is unaffected upon blending. However, for PbSe blends with both polymers, the PIA spectra show very little polaronic signal, suggesting that few, if any, long-lived charges are being produced by photoinduced charge transfer.

7.
Nano Lett ; 8(8): 2585-90, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18578549

RESUMO

We study the effects of octadecanethiol on the photoluminescence intensity and blinking dynamics of single CdSe nanocrystal quantum dots. The number of luminescent nanocrystals per unit area, the intensity histograms of the luminescent nanocrystals, and the single nanocrystal blinking behavior are analyzed in samples with and without added octadecanethiol. We find that the individual nanocrystals within an ensemble do not quench uniformly with thiol addition. The data suggest that the binding of a single octadecanethiol molecule to a CdSe nanocrystal can decrease the photoluminescence quantum yield of that single nanocrystal by at least 50%. These results are important for interpreting photoluminescence-based studies of nanocrystal-ligand binding constants and surface chemistry.

8.
Nano Lett ; 6(3): 463-7, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16522043

RESUMO

We report multilayer nanocrystal quantum dot light-emitting diodes (QD-LEDs) fabricated by spin-coating a monolayer of colloidal CdSe/CdS nanocrystals on top of thermally polymerized solvent-resistant hole-transport layers (HTLs). We obtain high-quality QD layers of controlled thickness (down to submonolayer) simply by spin-coating QD solutions directly onto the HTL. The resulting QD-LEDs exhibit narrow ( approximately 30 nm, fwhm) electroluminescence from the QDs with virtually no emission from the organic matrix at any voltage. Using multiple spin-on HTLs improves the external quantum efficiency of the QD-LEDs to approximately 0.8% at a brightness of 100 cd/m(2) (with a maximum brightness over 1,000 cd/m(2)). We conclude that QD-LEDs could be made more efficient by further optimization of the organic semiconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA