Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 295(31): 10741-10748, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32571880

RESUMO

Approximately 17 years after the severe acute respiratory syndrome coronavirus (SARS-CoV) epidemic, the world is currently facing the COVID-19 pandemic caused by SARS corona virus 2 (SARS-CoV-2). According to the most optimistic projections, it will take more than a year to develop a vaccine, so the best short-term strategy may lie in identifying virus-specific targets for small molecule-based interventions. All coronaviruses utilize a molecular mechanism called programmed -1 ribosomal frameshift (-1 PRF) to control the relative expression of their proteins. Previous analyses of SARS-CoV have revealed that it employs a structurally unique three-stemmed mRNA pseudoknot that stimulates high -1 PRF rates and that it also harbors a -1 PRF attenuation element. Altering -1 PRF activity impairs virus replication, suggesting that this activity may be therapeutically targeted. Here, we comparatively analyzed the SARS-CoV and SARS-CoV-2 frameshift signals. Structural and functional analyses revealed that both elements promote similar -1 PRF rates and that silent coding mutations in the slippery sites and in all three stems of the pseudoknot strongly ablate -1 PRF activity. We noted that the upstream attenuator hairpin activity is also functionally retained in both viruses, despite differences in the primary sequence in this region. Small-angle X-ray scattering analyses indicated that the pseudoknots in SARS-CoV and SARS-CoV-2 have the same conformation. Finally, a small molecule previously shown to bind the SARS-CoV pseudoknot and inhibit -1 PRF was similarly effective against -1 PRF in SARS-CoV-2, suggesting that such frameshift inhibitors may be promising lead compounds to combat the current COVID-19 pandemic.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/tratamento farmacológico , Desenho de Fármacos , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , RNA Viral/genética , Betacoronavirus/química , COVID-19 , Regulação Viral da Expressão Gênica , Humanos , Pandemias , RNA Viral/química , SARS-CoV-2 , Replicação Viral/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
2.
Biochemistry ; 59(2): 171-174, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31557007

RESUMO

The dimensions of intrinsically disordered proteins (IDPs) are sensitive to small energetic-entropic differences between intramolecular and protein-solvent interactions. This is commonly observed on modulating solvent composition and temperature. However, the inherently heterogeneous conformational landscape of IDPs is also expected to be influenced by mutations that can (de)stabilize pockets of local and even global structure, native and non-native, and hence the average dimensions. Here, we show experimental evidence for the remarkably tunable landscape of IDPs by employing the DNA-binding domain of CytR, a high-sequence-complexity IDP, as a model system. CytR exhibits a range of structure and compactness upon introducing specific mutations that modulate microscopic terms, including main-chain entropy, hydrophobicity, and electrostatics. The degree of secondary structure, as monitored by far-UV circular dichroism (CD), is strongly correlated to average ensemble dimensions for 14 different mutants of CytR and is consistent with the Uversky-Fink relation. Our experiments highlight how average ensemble dimensions can be controlled via mutations even in the disordered regime, the prevalence of non-native interactions and provide testable controls for molecular simulations.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Mutação Puntual , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína
3.
Nucleic Acids Res ; 46(8): 4044-4053, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29538715

RESUMO

The amplitude of thermodynamic fluctuations in biological macromolecules determines their conformational behavior, dimensions, nature of phase transitions and effectively their specificity and affinity, thus contributing to fine-tuned molecular recognition. Unique among large-scale conformational changes in proteins are temperature-induced collapse transitions in intrinsically disordered proteins (IDPs). Here, we show that CytR DNA-binding domain, an IDP that folds on binding DNA, undergoes a coil-to-globule transition with temperature in the absence of DNA while exhibiting energetically decoupled local and global structural rearrangements, and maximal thermodynamic fluctuations at the optimal bacterial growth temperature. The collapse is shown to be a continuous transition through a combination of statistical-mechanical modeling and all-atom implicit solvent simulations. Surprisingly, CytR binds single-site cognate DNA with negative cooperativity, described by Hill coefficients less than one, resulting in a graded binding response. We show that heterogeneity arising from varying binding-competent CytR conformations or orientations at the single-molecular level contributes to negative binding cooperativity at the level of bulk measurements due to the conflicting requirements of collapse transition, large fluctuations and folding-upon-binding. Our work reports strong evidence for functionally driven thermodynamic fluctuations in determining the extent of collapse and disorder with implications in protein search efficiency of target DNA sites and regulation.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Modelos Estatísticos , Ligação Proteica , Conformação Proteica , Termodinâmica
4.
Nucleic Acids Res ; 46(17): 8700-8709, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30107436

RESUMO

DNA-binding protein domains (DBDs) sample diverse conformations in equilibrium facilitating the search and recognition of specific sites on DNA over millions of energetically degenerate competing sites. We hypothesize that DBDs have co-evolved to sense and exploit the strong electric potential from the array of negatively charged phosphate groups on DNA. We test our hypothesis by employing the intrinsically disordered DBD of cytidine repressor (CytR) as a model system. CytR displays a graded increase in structure, stability and folding rate on increasing the osmolarity of the solution that mimics the non-specific screening by DNA phosphates. Electrostatic calculations and an Ising-like statistical mechanical model predict that CytR exhibits features of an electric potential sensor modulating its dimensions and landscape in a unique distance-dependent manner, while DNA plays the role of a non-specific macromolecular chaperone. Accordingly, CytR binds its natural half-site faster than the diffusion-controlled limit and even random DNA conforming to an electrostatic-steering binding mechanism. Our work unravels for the first time the synergistic features of a natural electrostatic potential sensor, a novel binding mechanism driven by electrostatic frustration and disorder, and the role of DNA in promoting distance-dependent protein structural transitions critical for switching between specific and non-specific DNA-binding modes.


Assuntos
DNA/química , Proteínas de Escherichia coli/química , Proteínas Intrinsicamente Desordenadas/química , Fosfatos/química , Proteínas Repressoras/química , Motivos de Aminoácidos , Sítios de Ligação , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico , Fosfatos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Eletricidade Estática , Termodinâmica
5.
Biochemistry ; 58(19): 2389-2397, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31002232

RESUMO

Structural disorder in proteins arises from a complex interplay between weak hydrophobicity and unfavorable electrostatic interactions. The extent to which the hydrophobic effect contributes to the unique and compact native state of proteins is, however, confounded by large compensation between multiple entropic and energetic terms. Here we show that protein structural order and cooperativity arise as emergent properties upon hydrophobic substitutions in a disordered system with non-intuitive effects on folding and function. Aided by sequence-structure analysis, equilibrium, and kinetic spectroscopic studies, we engineer two hydrophobic mutations in the disordered DNA-binding domain of CytR that act synergistically, but not in isolation, to promote structure, compactness, and stability. The double mutant, with properties of a fully ordered domain, exhibits weak cooperativity with a complex and rugged conformational landscape. The mutant, however, binds cognate DNA with an affinity only marginally higher than that of the wild type, though nontrivial differences are observed in the binding to noncognate DNA. Our work provides direct experimental evidence of the dominant role of non-additive hydrophobic effects in shaping the molecular evolution of order in disordered proteins and vice versa, which could be generalized to even folded proteins with implications for protein design and functional manipulation.


Assuntos
Proteínas de Escherichia coli/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Repressoras/química , Sítios de Ligação , Varredura Diferencial de Calorimetria , Escherichia coli/química , Proteínas de Escherichia coli/genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/genética , Cinética , Modelos Moleculares , Proteínas Mutantes/química , Mutação Puntual , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteínas Repressoras/genética , Eletricidade Estática
6.
Phys Chem Chem Phys ; 17(16): 11042-52, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25824585

RESUMO

In the computational characterization of single domain protein folding, the effective free energies of numerous microstates are projected onto few collective degrees of freedom that in turn serve as well-defined reaction coordinates. In this regard, one-dimensional (1D) free energy profiles are widely used mainly for their simplicity. Since folding and functional landscapes are interlinked, how well can these reduced representations capture the structural and dynamic features of functional states while being simultaneously consistent with experimental observables? We investigate this issue by characterizing the folding of the four-helix bundle bovine acyl-CoA binding protein (bACBP), which exhibits complex equilibrium and kinetic behaviours, employing an Ising-like statistical mechanical model and molecular simulations. We show that the features of the 1D free energy profile are sufficient to quantitatively reproduce multiple experimental observations including millisecond chevron-like kinetics and temperature dependence, a microsecond fast phase, barrier heights, unfolded state movements, the intermediate structure and average ϕ-values. Importantly, we find that the structural features of the native-like intermediate (partial disorder in helix 1) are intricately linked to a unique interplay between packing and electrostatics in this domain. By comparison with available experimental data, we propose that this intermediate determines the promiscuous functional behaviour of bACBP that exhibits broad substrate specificity. Our results present evidence to the possibility of employing the statistical mechanical model and the resulting 1D free energy profile to not just understand folding mechanisms but to even extract features of functionally relevant states and their energetic origins.


Assuntos
Inibidor da Ligação a Diazepam/química , Inibidor da Ligação a Diazepam/metabolismo , Dobramento de Proteína , Animais , Bovinos , Cinética , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Eletricidade Estática , Termodinâmica
7.
Sci Adv ; 9(26): eadh4591, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37379390

RESUMO

A longstanding goal in the field of intrinsically disordered proteins (IDPs) is to characterize their structural heterogeneity and pinpoint the role of this heterogeneity in IDP function. Here, we use multinuclear chemical exchange saturation (CEST) nuclear magnetic resonance to determine the structure of a thermally accessible globally folded excited state in equilibrium with the intrinsically disordered native ensemble of a bacterial transcriptional regulator CytR. We further provide evidence from double resonance CEST experiments that the excited state, which structurally resembles the DNA-bound form of cytidine repressor (CytR), recognizes DNA by means of a "folding-before-binding" conformational selection pathway. The disorder-to-order regulatory switch in DNA recognition by natively disordered CytR therefore operates through a dynamical variant of the lock-and-key mechanism where the structurally complementary conformation is transiently accessed via thermal fluctuations.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Intrinsicamente Desordenadas/química , Dobramento de Proteína , Ligação Proteica , Espectroscopia de Ressonância Magnética , DNA/química , Conformação Proteica
8.
Viruses ; 14(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215770

RESUMO

Recurrent outbreaks of novel zoonotic coronavirus (CoV) diseases in recent years have highlighted the importance of developing therapeutics with broad-spectrum activity against CoVs. Because all CoVs use -1 programmed ribosomal frameshifting (-1 PRF) to control expression of key viral proteins, the frameshift signal in viral mRNA that stimulates -1 PRF provides a promising potential target for such therapeutics. To test the viability of this strategy, we explored whether small-molecule inhibitors of -1 PRF in SARS-CoV-2 also inhibited -1 PRF in a range of bat CoVs-the most likely source of future zoonoses. Six inhibitors identified in new and previous screens against SARS-CoV-2 were evaluated against the frameshift signals from a panel of representative bat CoVs as well as MERS-CoV. Some drugs had strong activity against subsets of these CoV-derived frameshift signals, while having limited to no effect on -1 PRF caused by frameshift signals from other viruses used as negative controls. Notably, the serine protease inhibitor nafamostat suppressed -1 PRF significantly for multiple CoV-derived frameshift signals. These results suggest it is possible to find small-molecule ligands that inhibit -1 PRF specifically in a broad spectrum of CoVs, establishing frameshift signals as a viable target for developing pan-coronaviral therapeutics.


Assuntos
Antivirais/farmacologia , Coronavirus/efeitos dos fármacos , Coronavirus/genética , Mutação da Fase de Leitura , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Animais , Antivirais/uso terapêutico , Quirópteros/virologia , Coronavirus/classificação , Infecções por Coronavirus/tratamento farmacológico , Conformação de Ácido Nucleico , RNA Mensageiro/genética , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Proteínas Virais/genética , Replicação Viral/efeitos dos fármacos
9.
Nat Commun ; 12(1): 4749, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362921

RESUMO

The RNA pseudoknot that stimulates programmed ribosomal frameshifting in SARS-CoV-2 is a possible drug target. To understand how it responds to mechanical tension applied by ribosomes, thought to play a key role during frameshifting, we probe its structural dynamics using optical tweezers. We find that it forms multiple structures: two pseudoknotted conformers with different stability and barriers, and alternative stem-loop structures. The pseudoknotted conformers have distinct topologies, one threading the 5' end through a 3-helix junction to create a knot-like fold, the other with unthreaded 5' end, consistent with structures observed via cryo-EM and simulations. Refolding of the pseudoknotted conformers starts with stem 1, followed by stem 3 and lastly stem 2; Mg2+ ions are not required, but increase pseudoknot mechanical rigidity and favor formation of the knot-like conformer. These results resolve the SARS-CoV-2 frameshift signal folding mechanism and highlight its conformational heterogeneity, with important implications for structure-based drug-discovery efforts.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico/genética , Conformação de Ácido Nucleico , RNA Viral/genética , Ribossomos/fisiologia , SARS-CoV-2/genética , COVID-19 , Mutação da Fase de Leitura/genética , Humanos , Pinças Ópticas , RNA Mensageiro/genética
10.
J Mol Biol ; 432(21): 5843-5847, 2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32920049

RESUMO

SARS-CoV-2 uses -1 programmed ribosomal frameshifting (-1 PRF) to control expression of key viral proteins. Because modulating -1 PRF can attenuate the virus, ligands binding to the RNA pseudoknot that stimulates -1 PRF may have therapeutic potential. Mutations in the pseudoknot have occurred during the pandemic, but how they affect -1 PRF efficiency and ligand activity is unknown. Studying a panel of six mutations in key regions of the pseudoknot, we found that most did not change -1 PRF levels, even when base-pairing was disrupted, but one led to a striking 3-fold decrease, suggesting SARS-CoV-2 may be less sensitive to -1 PRF modulation than expected. Examining the effects of a small-molecule -1 PRF inhibitor active against SARS-CoV-2, it had a similar effect on all mutants tested, regardless of basal -1 PRF efficiency, indicating that anti-frameshifting activity can be resistant to natural pseudoknot mutations. These results have important implications for therapeutic strategies targeting SARS-CoV-2 through modulation of -1 PRF.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Mudança da Fase de Leitura do Gene Ribossômico/efeitos dos fármacos , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Pneumonia Viral/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Antivirais/química , Betacoronavirus/genética , COVID-19 , Infecções por Coronavirus/virologia , Humanos , Ligantes , Mutação/efeitos dos fármacos , Pandemias , Pneumonia Viral/virologia , RNA Mensageiro/genética , RNA Viral/genética , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/química , Proteínas Virais/genética
11.
bioRxiv ; 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32587971

RESUMO

17 years after the SARS-CoV epidemic, the world is facing the COVID-19 pandemic. COVID-19 is caused by a coronavirus named SARS-CoV-2. Given the most optimistic projections estimating that it will take over a year to develop a vaccine, the best short-term strategy may lie in identifying virus-specific targets for small molecule interventions. All coronaviruses utilize a molecular mechanism called -1 PRF to control the relative expression of their proteins. Prior analyses of SARS-CoV revealed that it employs a structurally unique three-stemmed mRNA pseudoknot to stimulate high rates of -1 PRF, and that it also harbors a -1 PRF attenuation element. Altering -1 PRF activity negatively impacts virus replication, suggesting that this molecular mechanism may be therapeutically targeted. Here we present a comparative analysis of the original SARS-CoV and SARS-CoV-2 frameshift signals. Structural and functional analyses revealed that both elements promote similar rates of -1 PRF and that silent coding mutations in the slippery sites and in all three stems of the pseudoknot strongly ablated -1 PRF activity. The upstream attenuator hairpin activity has also been functionally retained. Small-angle x-ray scattering indicated that the pseudoknots in SARS-CoV and SARS-CoV-2 had the same conformation. Finally, a small molecule previously shown to bind the SARS-CoV pseudoknot and inhibit -1 PRF was similarly effective against -1 PRF in SARS-CoV-2, suggesting that such frameshift inhibitors may provide promising lead compounds to counter the current pandemic.

12.
J Mol Biol ; 430(17): 2688-2694, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-29885328

RESUMO

Many intrinsically disordered proteins switch between unfolded and folded-like forms in the presence of their binding partner. The possibility of a pre-equilibrium between the two macrostates is challenging to discern given the complex conformational landscape. Here, we show that CytR, a disordered DNA-binding domain, samples a folded-like excited state in its native ensemble through equilibrium multi-probe spectroscopy, kinetics and an Ising-like statistical mechanical model. The population of the excited state increases upon stabilization of the native ensemble with an osmolyte, while decreasing with increasing temperatures. A conserved proline residue, the mutation of which weakens the binding affinity to the target promoter, is found to uniquely control the population of the minor excited state. Semi-quantitative statistical mechanical modeling reveals that the conformational diffusion coefficient of disordered CytR is an order of magnitude slower than the estimates from folded domains. The osmolyte and proline mutation smoothen and roughen up the landscape, respectively, apart from modulation of populations. Our work uncovers general strategies to probe for excited structured states in disordered ensembles, and to measure and modulate the roughness of the disordered landscapes, inter-conversion rates of species and their populations.


Assuntos
DNA/metabolismo , Entropia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Ligação Proteica , Conformação Proteica , DNA/química , DNA/genética , Proteínas Intrinsicamente Desordenadas/genética , Cinética , Modelos Moleculares , Mutação , Dobramento de Proteína , Termodinâmica
13.
J Phys Chem B ; 119(4): 1323-33, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25525671

RESUMO

High-resolution experiments on several apparently two-state proteins point to the existence of partially structured excited- or intermediate-states in dynamic equilibrium with native states. Are these intermediate states the byproducts of functional constraints that are by necessity evolutionarily conserved or are they merely the hidden imprints of evolutionary processes? To investigate this, we characterize the folding of Barstar that has a rich history of complex conformational behavior employing a combination of methods-statistical-mechanical model, electrostatic calculations, MD simulations and multiple-sequence alignment-that provide a detailed yet consistent view of its landscape in agreement with experiments. We find that the multistate folding in Barstar is the direct consequence of a strong evolutionary pressure to maintain its binding affinity with Barnase through a large negative electrostatic potential on one face. A single mutation (E76K or E80K) at the binding site is shown to not only enhance the native-state stability but also alter the Barstar folding mechanism to resemble an unfrustrated two-state-like system. Our results argue that though natural proteins are expected to be minimally frustrated, functional constraints can singularly determine the folding mechanism even if it occurs at the expense of frustrated multistate folding.


Assuntos
Proteínas de Bactérias/química , Evolução Molecular , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA