Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408253

RESUMO

The performance of the coded generalized frequency division multiplexing (GFDM) transceiver has been evaluated in a shallow underwater acoustic channel (UAC). Acoustic transmission is the scheme of choice for communication in UAC since radio waves suffer from absorption and light waves scatter. Although orthogonal frequency division multiplexing (OFDM) has found its ground for multicarrier acoustic underwater communication, it suffers from high peak to average power ratio (PAPR) and out of band (OOB) emissions. We propose a coded-GFDM based multicarrier system since GFDM has a higher spectral efficiency compared to a traditional OFDM system. In doing so, we assess two block codes, namely Bose, Chaudari, and Hocquenghem (BCH) codes, Reed-Solomon (RS) codes, and several convolutional codes. We present the error performances of these codes when used with GFDM. Furthermore, we evaluate the performance of the proposed system using two equalizers: Matched Filter (MF) and Zero-Forcing (ZF). Simulation results show that among the various block coding schemes that we tested, BCH (31,6) and RS (15,3) give the best error performance. Among the convolutional codes that we tested, rate 1/4 convolutional codes give the best performance. However, the performance of BCH and RS codes is much better than the convolutional codes. Moreover, the performance of the ZF equalizer is marginally better than the MF equalizer. In conclusion, using the channel coding schemes with GFDM improves error performance manifolds thereby increasing the reliability of the GFDM system despite slightly higher complexity.

2.
Sensors (Basel) ; 22(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35684737

RESUMO

In this paper, we briefly look at the latest state-ot-the-art in the domain of multi-input multi-output (MIMO) radio frequency identification (RFID) systems while detailing the work done in the domain of anti-collision, range enhancements, bit error rate (BER) improvements and security. Various passive ultra-high frequency (UHF) RFID implementations are considered that employ multiple antennas at the reader and single or multiple antennas at each tag. We look at several recent works those explored MIMO for RFID receivers. When using MIMO at the backscatter channel, significant improvements can be achieved in the BER as well as range extension. With the extra reliability and increased throughput, such systems can be deployed in many important applications like large tag reading scenarios and accurate tracking. Increased throughput is directly dependent on estimation of tag quantity in a bulk reading environment and usually estimators designed for single antenna systems under-perform in such settings causing low signal to noise ratio (SNR) when employed in MIMO systems where tag signal overlapping can happen more often. One of the key challenges is to keep the design of the RFID tag simple, cutting cost and power requirement when employing anti-collision schemes. We provide a brief survey in some of the recent developments related to MIMO RFID systems, the protocols and algorithms used, and improvements achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA