Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cancer Sci ; 113(6): 1909-1918, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35359025

RESUMO

Infection with cagA-positive Helicobacter pylori strains plays an etiological role in the development of gastric cancer. The CagA protein is injected into gastric epithelial cells through a bacterial Type IV secretion system. Inside the host cells, CagA promiscuously associates with multiple host cell proteins including the prooncogenic phosphatase SHP2 that is required for full activation of the Ras-ERK pathway. CagA-SHP2 interaction aberrantly activates SHP2 and thereby deregulates Ras-ERK signaling. Cancer is regarded as a disease of the genome, indicating that H. pylori-mediated gastric carcinogenesis is also associated with genomic alterations in the host cell. Indeed, accumulating evidence has indicated that H. pylori infection provokes DNA double-stranded breaks (DSBs) by both CagA-dependent and CagA-independent mechanisms. DSBs are repaired by either error-free homologous recombination (HR) or error-prone non-homologous end joining (NHEJ) or microhomology-mediated end joining (MMEJ). Infection with cagA-positive H. pylori inhibits RAD51 expression while dampening cytoplasmic-to-nuclear translocalization of BRCA1, causing replication fork instability and HR defects (known as "BRCAness"), which collectively provoke genomic hypermutation via non-HR-mediated DSB repair. H. pylori also subverts multiple DNA damage responses including DNA repair systems. Infection with H. pylori additionally inhibits the function of the p53 tumor suppressor, thereby dampening DNA damage-induced apoptosis, while promoting proliferation of CagA-delivered cells. Therefore, H. pylori cagA-positive strains promote abnormal expansion of cells with BRCAness, which dramatically increases the chance of generating driver gene mutations in the host cells. Once such driver mutations are acquired, H. pylori CagA is no longer required for subsequent gastric carcinogenesis (Hit-and-Run carcinogenesis).


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carcinogênese/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Neoplasias Gástricas/metabolismo
2.
Int J Mol Sci ; 23(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269634

RESUMO

The initial step in bacterial infection is adherence of the bacterium to the target cell surface. Helicobacter pylori exploits the interaction of bacterial adhesin protein HopQ with human epithelial CEACAMs (CEACAM1, 5, and 6) to stably adhere to gastric epithelial cells, which is necessary for delivery of the H. pylori CagA oncoprotein into the epithelial cells via a type IV secretion system. In contrast to human CEACAMs, however, HopQ does not interact with Ceacam1 (mouse CEACAM1) in vitro or in CHO cells ectopically expressing Ceacam1. Since the mouse genome lacks Ceacam5 and Ceacam6, no significant HopQ-Ceacam interaction may occur in mouse gastric epithelial cells. Here, we found that the mouse stomach has a much lower expression level of Ceacam1 than the expression level of CEACAM1 in the human stomach. Consistently, mouse gastric epithelial cells resist CagA delivery by cagA-positive H. pylori, and the delivery is restored by ectopic expression of human CEACAM1 or CEACAM5 in mouse gastric epithelial cells. Thus, despite the fact that mice are routinely used for H. pylori infection studies, a low expression level of Ceacam1 in the mouse stomach together with the loss or greatly reduced interaction of HopQ with Ceacams make the mouse an inappropriate model for studying the role of H. pylori-delivered CagA in gastric pathogenesis, including the development of gastric cancer.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cricetinae , Cricetulus , Células Epiteliais/metabolismo , Helicobacter pylori/metabolismo , Camundongos , Transporte Proteico , Estômago , Sistemas de Secreção Tipo IV/genética , Sistemas de Secreção Tipo IV/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163588

RESUMO

The proteins from the Fanconi Anemia (FA) pathway of DNA repair maintain DNA replication fork integrity by preventing the unscheduled degradation of nascent DNA at regions of stalled replication forks. Here, we ask if the bacterial pathogen H. pylori exploits the fork stabilisation machinery to generate double stand breaks (DSBs) and genomic instability. Specifically, we study if the H. pylori virulence factor CagA generates host genomic DSBs through replication fork destabilisation and collapse. An inducible gastric cancer model was used to examine global CagA-dependent transcriptomic and proteomic alterations, using RNA sequencing and SILAC-based mass spectrometry, respectively. The transcriptional alterations were confirmed in gastric cancer cell lines infected with H. pylori. Functional analysis was performed using chromatin fractionation, pulsed-field gel electrophoresis (PFGE), and single molecule DNA replication/repair fiber assays. We found a core set of 31 DNA repair factors including the FA genes FANCI, FANCD2, BRCA1, and BRCA2 that were downregulated following CagA expression. H. pylori infection of gastric cancer cell lines showed downregulation of the aforementioned FA genes in a CagA-dependent manner. Consistent with FA pathway downregulation, chromatin purification studies revealed impaired levels of Rad51 but higher recruitment of the nuclease MRE11 on the chromatin of CagA-expressing cells, suggesting impaired fork protection. In line with the above data, fibre assays revealed higher fork degradation, lower fork speed, daughter strands gap accumulation, and impaired re-start of replication forks in the presence of CagA, indicating compromised genome stability. By downregulating the expression of key DNA repair genes such as FANCI, FANCD2, BRCA1, and BRCA2, H. pylori CagA compromises host replication fork stability and induces DNA DSBs through fork collapse. These data unveil an intriguing example of a bacterial virulence factor that induces genomic instability by interfering with the host replication fork stabilisation machinery.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Regulação para Baixo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Proteínas Oncogênicas/metabolismo , Transdução de Sinais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Linhagem Celular , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Infecções por Helicobacter/genética , Helicobacter pylori/genética , Humanos , Proteínas Oncogênicas/genética
4.
Cancer Sci ; 111(5): 1596-1606, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32198795

RESUMO

Chronic infection with Helicobacter pylori cagA-positive strains is causally associated with the development of gastric diseases, most notably gastric cancer. The cagA-encoded CagA protein, which is injected into gastric epithelial cells by bacterial type IV secretion, undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) segments (EPIYA-A, EPIYA-B, EPIYA-C, and EPIYA-D), which are present in various numbers and combinations in its C-terminal polymorphic region, thereby enabling CagA to promiscuously interact with SH2 domain-containing host cell proteins, including the prooncogenic SH2 domain-containing protein tyrosine phosphatase 2 (SHP2). Perturbation of host protein functions by aberrant complex formation with CagA has been considered to contribute to the development of gastric cancer. Here we show that SHIP2, an SH2 domain-containing phosphatidylinositol 5'-phosphatase, is a hitherto undiscovered CagA-binding host protein. Similar to SHP2, SHIP2 binds to the Western CagA-specific EPIYA-C segment or East Asian CagA-specific EPIYA-D segment through the SH2 domain in a tyrosine phosphorylation-dependent manner. In contrast to the case of SHP2, however, SHIP2 binds more strongly to EPIYA-C than to EPIYA-D. Interaction with CagA tethers SHIP2 to the plasma membrane, where it mediates production of phosphatidylinositol 3,4-diphosphate [PI(3,4)P2 ]. The CagA-SHIP2 interaction also potentiates the morphogenetic activity of CagA, which is caused by CagA-deregulated SHP2. This study indicates that initially delivered CagA interacts with SHIP2 and thereby strengthens H. pylori-host cell attachment by altering membrane phosphatidylinositol compositions, which potentiates subsequent delivery of CagA that binds to and thereby deregulates the prooncogenic phosphatase SHP2.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Motivos de Aminoácidos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Linhagem Celular , Membrana Celular/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/genética , Fosforilação , Ligação Proteica , Transporte Proteico , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Domínios de Homologia de src
5.
Cancer Sci ; 108(5): 931-940, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28235245

RESUMO

Recent studies have indicated that increased expression of the M2 isoform of pyruvate kinase (PKM2) is involved in glycolysis and tumor development. However, little is known about the role of PKM2 in gastric cancer (GC). Therefore, we examined the expression and function of PKM2 in human GC. We evaluated PKM1 and PKM2 expression by quantitative RT-PCR in gastric tissues from 10 patients who underwent gastric endoscopic submucosal dissection, 80 patients who underwent gastrectomy, and seven healthy volunteers, and analyzed the correlation with clinicopathological variables. To assess the function of PKM2, we generated PKM2-knockdown GC cells, and investigated the phenotypic changes. Furthermore, we examined the induction of PKM2 expression by cytotoxin-associated gene A (CagA), a pathogenic factor of Helicobacter pylori, using CagA-inducible GC cells. We found that PKM2 was predominantly expressed not only in GC lesions but also in the normal gastric regions of GC patients and in the gastric mucosa of healthy volunteers. The PKM2 expression was significantly higher in carcinoma compared to non-cancerous tissue and was associated with venous invasion. Knockdown of PKM2 in GC cells caused significant decreases in cellular proliferation, migration, anchorage-independent growth, and sphere formation in vitro, and in tumor growth and liver metastasis in vivo. The serine concentration-dependent cell proliferation was also inhibited by PKM2 silencing. Furthermore, we found that PKM2 expression was upregulated by CagA by way of the Erk pathway. These results suggested that enhanced PKM2 expression plays a pivotal role in the carcinogenesis and development of GC in part by regulating cancer-specific metabolism.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Isoformas de Proteínas/genética , Neoplasias Gástricas/genética , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Idoso , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glicólise/genética , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Isoformas de Proteínas/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Regulação para Cima/genética , Proteínas de Ligação a Hormônio da Tireoide
6.
Cancer Sci ; 107(7): 972-80, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27116701

RESUMO

Pragmin is one of the few mammalian proteins containing the Glu-Pro-Ile-Tyr-Ala (EPIYA) tyrosine-phosphorylation motif that was originally discovered in the Helicobacter pylori CagA oncoprotein. Following delivery into gastric epithelial cells by type IV secretion and subsequent tyrosine phosphorylation at the EPIYA motifs, CagA serves as an oncogenic scaffold/adaptor that promiscuously interacts with SH2 domain-containing mammalian proteins such as the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase-2 (SHP2) and the C-terminal Src kinase (Csk), a negative regulator of Src family kinases. Like CagA, Pragmin also forms a physical complex with Csk. In the present study, we found that Pragmin directly binds to Csk by the tyrosine-phosphorylated EPIYA motif. The complex formation potentiates kinase activity of Csk, which in turn phosphorylates Pragmin on tyrosine-238 (Y238), Y343, and Y391. As Y391 of Pragmin comprises the EPIYA motif, Pragmin-Csk interaction creates a feed-forward regulatory loop of Csk activation. Together with the finding that Pragmin and Csk are colocalized to focal adhesions, these observations indicate that the Pragmin-Csk interaction, triggered by Pragmin EPIYA phosphorylation, robustly stimulates the kinase activity of Csk at focal adhesions, which direct cell-matrix adhesion that regulates cell morphology and cell motility. As a consequence, expression of Pragmin and/or Csk in epithelial cells induces an elongated cell shape with elevated cell scattering in a manner that is mutually dependent on Pragmin and Csk. Deregulation of the Pragmin-Csk axis may therefore induce aberrant cell migration that contributes to tumor invasion and metastasis.


Assuntos
Proteínas de Transporte/metabolismo , Movimento Celular , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Quinases da Família src/metabolismo , Motivos de Aminoácidos , Animais , Biocatálise , Proteína Tirosina Quinase CSK , Proteínas de Transporte/química , Forma Celular , Células Cultivadas , Ativação Enzimática , Retroalimentação Fisiológica , Adesões Focais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Invasividade Neoplásica , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Especificidade por Substrato
7.
Cancer Sci ; 105(3): 245-51, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24354359

RESUMO

Helicobacter pylori strains carrying the cagA gene are associated with severe disease outcomes, most notably gastric cancer. CagA protein is delivered into gastric epithelial cells by a type IV secretion system. The translocated CagA undergoes tyrosine phosphorylation at the C-terminal EPIYA motifs by host cell kinases. Tyrosine-phosphorylated CagA acquires the ability to interact with and activate SHP2, thereby activating mitogenic signaling and inducing cell morphological transformation (hummingbird phenotype). CagA also interacts with PAR1b via the CM sequence, resulting in induction of junctional and polarity defects. Furthermore, CagA-PAR1b interaction stabilizes the CagA-SHP2 complex. Because transgenic mice systemically expressing CagA develop gastrointestinal and hematological malignancies, CagA is recognized as a bacterium-derived oncoprotein. Interestingly, the C-terminal region of CagA displays a large diversity among H. pylori strains, which influences the ability of CagA to bind to SHP2 and PAR1b. In the present study, we investigated the biological activity of v225d CagA, an Amerindian CagA of H. pylori isolated from a Venezuelan Piaroa Amerindian subject, because the variant CagA does not possess a canonical CM sequence. We found that v225d CagA interacts with SHP2 but not PAR1b. Furthermore, SHP2-binding activity of v225d CagA was much lower than that of CagA of H. pylori isolated from Western countries (Western CagA). v225d CagA also displayed a reduced ability to induce the hummingbird phenotype than that of Western CagA. Given that perturbation of PAR1b and SHP2 by CagA underlies the oncogenic potential of CagA, the v225d strain is considered to be less oncogenic than other well-studied cagA-positive H. pylori strains.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Células COS , Chlorocebus aethiops , Cães , Células Epiteliais/microbiologia , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Humanos , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo
8.
Proc Natl Acad Sci U S A ; 108(36): 14938-43, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21873224

RESUMO

Several pathogenic bacteria have adopted effector proteins that, upon delivery into mammalian cells, undergo tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) or EPIYA-like sequence motif by host kinases such as Src family kinases (SFKs). This EPIYA phosphorylation triggers complex formation of bacterial effectors with SH2 domain-containing proteins that results in perturbation of host cell signaling and subsequent pathogenesis. Although the presence of such an anomalous protein interaction suggests the existence of a mammalian EPIYA-containing protein whose function is mimicked or subverted by bacterial EPIYA effectors, no molecule that uses the EPIYA motif for biological function has so far been reported in mammals. Here we show that mammalian Pragmin/SgK223 undergoes tyrosine phosphorylation at the EPIYA motif by SFKs and thereby acquires the ability to interact with the SH2 domain of the C-terminal Src kinase (Csk), a negative regulator of SFKs. The Pragmin-Csk interaction prevents translocalization of Csk from the cytoplasm to the membrane and subsequent inactivation of membrane-associated SFKs. As a result, SFK activity is sustained in cells where Pragmin is phosphorylated at the EPIYA motif. Because EPIYA phosphorylation of Pragmin is mediated by SFKs, cytoplasmic sequestration of Csk by Pragmin establishes a positive feedback regulation of SFK activation. Remarkably, the Helicobacter pylori EPIYA effector CagA binds to the Csk SH2 domain in place of Pragmin and enforces membrane recruitment of Csk and subsequent inhibition of SFKs. This work identifies Pragmin as a mammalian EPIYA effector and suggests that bacterial EPIYA effectors target Pragmin to subvert SFKs for successful infection.


Assuntos
Proteínas de Transporte/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Transdução de Sinais , Quinases da Família src/metabolismo , Motivos de Aminoácidos , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Infecções por Helicobacter/genética , Helicobacter pylori/patogenicidade , Humanos , Fosforilação , Domínios de Homologia de src , Quinases da Família src/genética
9.
Nature ; 447(7142): 330-3, 2007 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-17507984

RESUMO

Helicobacter pylori cagA-positive strains are associated with gastritis, ulcerations and gastric adenocarcinoma. CagA is delivered into gastric epithelial cells and, on tyrosine phosphorylation, specifically binds and activates the SHP2 oncoprotein, thereby inducing the formation of an elongated cell shape known as the 'hummingbird' phenotype. In polarized epithelial cells, CagA also disrupts the tight junction and causes loss of apical-basolateral polarity. We show here that H. pylori CagA specifically interacts with PAR1/MARK kinase, which has an essential role in epithelial cell polarity. Association of CagA inhibits PAR1 kinase activity and prevents atypical protein kinase C (aPKC)-mediated PAR1 phosphorylation, which dissociates PAR1 from the membrane, collectively causing junctional and polarity defects. Because of the multimeric nature of PAR1 (ref. 14), PAR1 also promotes CagA multimerization, which stabilizes the CagA-SHP2 interaction. Furthermore, induction of the hummingbird phenotype by CagA-activated SHP2 requires simultaneous inhibition of PAR1 kinase activity by CagA. Thus, the CagA-PAR1 interaction not only elicits the junctional and polarity defects but also promotes the morphogenetic activity of CagA. Our findings revealed that PAR1 is a key target of H. pylori CagA in the disorganization of gastric epithelial architecture underlying mucosal damage, inflammation and carcinogenesis.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Polaridade Celular , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Helicobacter pylori , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Linhagem Celular , Células Epiteliais/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Quaternária de Proteína , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Proteínas Tirosina Fosfatases/metabolismo , Junções Íntimas/metabolismo
10.
J Biol Chem ; 286(38): 33622-31, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21813645

RESUMO

Chronic infection with Helicobacter pylori cagA-positive strains is associated with atrophic gastritis, peptic ulceration, and gastric carcinoma. The cagA gene product, CagA, is delivered into gastric epithelial cells via type IV secretion, where it undergoes tyrosine phosphorylation at the EPIYA motifs. Tyrosine-phosphorylated CagA binds and aberrantly activates the oncogenic tyrosine phosphatase SHP2, which mediates induction of elongated cell morphology (hummingbird phenotype) that reflects CagA virulence. CagA also binds and inhibits the polarity-regulating kinase partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) via the CagA multimerization (CM) sequence independently of tyrosine phosphorylation. Because PAR1 exists as a homodimer, two CagA proteins appear to be passively dimerized through complex formation with a PAR1 dimer in cells. Interestingly, a CagA mutant that lacks the CM sequence displays a reduced SHP2 binding activity and exhibits an attenuated ability to induce the hummingbird phenotype, indicating that the CagA-PAR1 interaction also influences the morphological transformation. Here we investigated the role of CagA dimerization in induction of the hummingbird phenotype with the use of a chemical dimerizer, coumermycin. We found that CagA dimerization markedly stabilizes the CagA-SHP2 complex and thereby potentiates SHP2 deregulation, causing an increase in the number of hummingbird cells. Protrusions of hummingbird cells induced by chemical dimerization of CagA are further elongated by simultaneous inhibition of PAR1. This study revealed a role of the CM sequence in amplifying the magnitude of SHP2 deregulation by CagA, which, in conjunction with the CM sequence-mediated inhibition of PAR1, evokes morphological transformation that reflects in vivo CagA virulence.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Helicobacter pylori/patogenicidade , Multimerização Proteica , Aminocumarinas/farmacologia , Sítios de Ligação , DNA Girase/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Helicobacter pylori/efeitos dos fármacos , Humanos , Proteínas Mutantes/metabolismo , Fenótipo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Multimerização Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Estômago/citologia , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Virulência/efeitos dos fármacos
11.
J Biol Chem ; 286(52): 44576-84, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22072711

RESUMO

Partitioning-defective 1b (PAR1b), also known as microtubule affinity-regulating kinase 2 (MARK2), is a member of evolutionally conserved PAR1/MARK serine/threonine kinase family, which plays a key role in the establishment and maintenance of cell polarity at least partly by phosphorylating microtubule-associated proteins (MAPs) that regulate microtubule stability. PAR1b has also been reported to influence actin cytoskeletal organization, raising the possibility that PAR1b functionally interacts with the Rho family of small GTPases, central regulators of the actin cytoskeletal system. Consistent with this notion, PAR1 was recently found to be physically associated with a RhoA-specific guanine nucleotide exchange factor H1 (GEF-H1). This observation suggests a functional link between PAR1b and GEF-H1. Here we show that PAR1b induces phosphorylation of GEF-H1 on serine 885 and serine 959. We also show that PAR1b-induced serine 885/serine 959 phosphorylation inhibits RhoA-specific GEF activity of GEF-H1. As a consequence, GEF-H1 phosphorylated on both of the serine residues loses the ability to stimulate RhoA and thereby fails to induce RhoA-dependent stress fiber formation. These findings indicate that PAR1b not only regulates microtubule stability through phosphorylation of MAPs but also influences actin stress fiber formation by inducing GEF-H1 phosphorylation. The dual function of PAR1b in the microtubule-based cytoskeletal system and the actin-based cytoskeletal system in the coordinated regulation of cell polarity, cell morphology, and cell movement.


Assuntos
Actinas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fibras de Estresse/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actinas/genética , Animais , Células COS , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Chlorocebus aethiops , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Fatores de Troca de Nucleotídeo Guanina Rho , Fibras de Estresse/genética , Proteína rhoA de Ligação ao GTP/genética
12.
Biochem Biophys Res Commun ; 420(2): 263-8, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22414689

RESUMO

Escherichia coli Orf135 hydrolyzes oxidatively damaged nucleotides such as 2-hydroxy-dATP, 8-oxo-dGTP and 5-hydroxy-CTP, in addition to 5-methyl-dCTP, dCTP and CTP. Nucleotide pool sanitization by Orf135 is important since nucleotides are continually subjected to potential damage by reactive oxygen species produced during respiration. Orf135 is a member of the Nudix family of proteins which hydrolyze nucleoside diphosphate derivatives. Nudix hydrolases are characterized by the presence of a conserved motif, even though they recognize various substrates and possess a variety of substrate binding pockets. We investigated the tertiary structure of Orf135 and its interaction with a 2-hydroxy-dATP analog using NMR. We report on the solution structure of Orf135, which should contribute towards a structural understanding of Orf135 and its interaction with substrates.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Escherichia coli/enzimologia , Pirofosfatases/química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Sítios de Ligação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Especificidade por Substrato
13.
Cell Host Microbe ; 29(6): 941-958.e10, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33989515

RESUMO

Infection with CagA-producing Helicobacter pylori plays a causative role in the development of gastric cancer. Upon delivery into gastric epithelial cells, CagA deregulates prooncogenic phosphatase SHP2 while inhibiting polarity-regulating kinase PAR1b through complex formation. Here, we show that CagA/PAR1b interaction subverts nuclear translocation of BRCA1 by inhibiting PAR1b-mediated BRCA1 phosphorylation. It hereby induces BRCAness that promotes DNA double-strand breaks (DSBs) while disabling error-free homologous recombination-mediated DNA repair. The CagA/PAR1b interaction also stimulates Hippo signaling that circumvents apoptosis of DNA-damaged cells, giving cells time to repair DSBs through error-prone mechanisms. The DSB-activated p53-p21Cip1 axis inhibits proliferation of CagA-delivered cells, but the inhibition can be overcome by p53 inactivation. Indeed, sequential pulses of CagA in TP53-mutant cells drove somatic mutation with BRCAness-associated genetic signatures. Expansion of CagA-delivered cells with BRCAness-mediated genome instability, from which CagA-independent cancer-predisposing cells arise, provides a plausible "hit-and-run mechanism" of H. pylori CagA for gastric carcinogenesis.


Assuntos
Antígenos de Bactérias/metabolismo , Proteína BRCA1/metabolismo , Proteínas de Bactérias/metabolismo , Células Epiteliais/metabolismo , Instabilidade Genômica , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Neoplasias Gástricas/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinogênese/metabolismo , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Células Epiteliais/microbiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Helicobacter pylori/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Serina-Treonina Quinase 3 , Transdução de Sinais , Estômago/microbiologia , Proteína Supressora de Tumor p53/metabolismo
14.
J Biol Chem ; 284(34): 23024-36, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19553659

RESUMO

Helicobacter pylori CagA plays a key role in gastric carcinogenesis. Upon delivery into gastric epithelial cells, CagA binds and deregulates SHP-2 phosphatase, a bona fide oncoprotein, thereby causing sustained ERK activation and impaired focal adhesions. CagA also binds and inhibits PAR1b/MARK2, one of the four members of the PAR1 family of kinases, to elicit epithelial polarity defect. In nonpolarized gastric epithelial cells, CagA induces the hummingbird phenotype, an extremely elongated cell shape characterized by a rear retraction defect. This morphological change is dependent on CagA-deregulated SHP-2 and is thus thought to reflect the oncogenic potential of CagA. In this study, we investigated the role of the PAR1 family of kinases in the hummingbird phenotype. We found that CagA binds not only PAR1b but also other PAR1 isoforms, with order of strength as follows: PAR1b > PAR1d >or= PAR1a > PAR1c. Binding of CagA with PAR1 isoforms inhibits the kinase activity. This abolishes the ability of PAR1 to destabilize microtubules and thereby promotes disassembly of focal adhesions, which contributes to the hummingbird phenotype. Consistently, PAR1 knockdown potentiates induction of the hummingbird phenotype by CagA. The morphogenetic activity of CagA was also found to be augmented through inhibition of non-muscle myosin II. Because myosin II is functionally associated with PAR1, perturbation of PAR1-regulated myosin II by CagA may underlie the defect of rear retraction in the hummingbird phenotype. Our findings reveal that CagA systemically inhibits PAR1 family kinases and indicate that malfunctioning of microtubules and myosin II by CagA-mediated PAR1 inhibition cooperates with deregulated SHP-2 in the morphogenetic activity of CagA.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Células COS , Linhagem Celular , Polaridade Celular/genética , Polaridade Celular/fisiologia , Chlorocebus aethiops , Cães , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Imunoprecipitação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Junções Íntimas/metabolismo
15.
Dev Cell ; 49(4): 590-604.e9, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31080060

RESUMO

High-molecular-weight hyaluronan, a major component of the extracellular matrix, is anti-oncogenic, whereas low-molecular-weight hyaluronan is pro-oncogenic, though the mechanisms underlying the size-dependent opposite bioactivities of hyaluronan remain uncertain. We show here that treatment with high-molecular-weight hyaluronan stimulates tumor-suppressive Hippo signaling in breast epithelial cells. Mechanistically, clustering of the CD44 extracellular domain by high-molecular-weight hyaluronan leads to recruitment of the polarity-regulating kinase PAR1b by the CD44 intracellular domain, which results in disruption of the Hippo signaling-inhibitory PAR1b-MST complex. Once liberated from PAR1b, MST activates Hippo signaling. Conversely, low-molecular-weight hyaluronan, which is produced by hyaluronidase-mediated degradation of high-molecular-weight hyaluronan, inhibits Hippo signaling by competing with high-molecular-weight hyaluronan for CD44 binding. Triple-negative breast cancers with higher hyaluronidase-2 expression show poorer prognosis than those with lower hyaluronidase-2 expression. Consistently, decreased hyaluronidase-2 is associated with reduced tumorigenicity in a tumor xenograft model. Hence, perturbation of high-molecular-weight hyaluronan-mediated Hippo signaling activation contributes to cancer aggressiveness.


Assuntos
Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Contagem de Células , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , Xenoenxertos , Via de Sinalização Hippo , Humanos , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia
16.
Int J Cancer ; 122(4): 823-31, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17960618

RESUMO

Infection with Helicobacter pylori cagA-positive strains causes gastritis and peptic ulceration and is associated with gastric adenocarcinoma. The cagA gene product CagA is delivered into gastric epithelial cells, where it undergoes tyrosine phosphorylation by Src family kinases at the C-terminal EPIYA-repeat region. Tyrosine-phosphorylated CagA specifically binds and activates SHP-2 tyrosine phosphatase, causing cell morphological transformation known as the hummingbird phenotype. CagA also destabilizes the E-cadherin/beta-catenin complex to elicit aberrant activation of the beta-catenin signal that underlies intestinal metaplasia. Here we show that translocalization of membranous beta-catenin and subsequent activation of the beta-catenin signal by CagA requires the EPIYA-repeat region, which is characterized by structural variation between CagA of H. pylori isolated in Western countries (Western CagA) and that of East Asian H. pylori isolates (East Asian CagA), but is independent of CagA tyrosine phosphorylation. Detailed analysis using a series of Western and East Asian CagA mutants revealed that deregulation of beta-catenin requires residues 1009-1086 and residues 908-1012 of ABCCC Western CagA and ABD East Asian CagA, respectively, and is mediated by the 16-amino-acid CagA multimerization sequence that is conserved between the 2 geographically distinct H. pylori CagA species. Our results indicate that aberrant activation of the beta-catenin signal, which promotes precancerous intestinal metaplasia, is an inherent and fundamental CagA activity that is independent of the structural polymorphism of CagA.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Transformação Celular Neoplásica/metabolismo , Lesões Pré-Cancerosas/metabolismo , Neoplasias Gástricas/etiologia , beta Catenina/metabolismo , Western Blotting , Caderinas/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Dimerização , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , beta Catenina/genética
17.
Cancer Sci ; 99(10): 2004-11, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19016760

RESUMO

Helicobacter pylori (H. pylori) cagA-positive strains are associated with gastritis, peptic ulcerations, and gastric adenocarcinoma. Upon delivery into gastric epithelial cells, the cagA-encoded CagA protein specifically binds and aberrantly activates SHP-2 oncoprotein in a manner that is dependent on CagA tyrosine phosphorylation. CagA-deregulated SHP-2 then elicits aberrant Erk activation while causing an elongated cell shape known as the hummingbird phenotype. In polarized epithelial cells, CagA also binds to PAR1b/MARK2 and inhibits the PAR1b kinase activity, thereby disrupting tight junctions and epithelial cell polarity independent of CagA tyrosine phosphorylation. We show here that the CagA-multimerization (CM) sequence that mediates interaction of CagA with PAR1b is not only essential for the CagA-triggered junctional defects but also plays an important role in induction of the hummingbird phenotype by potentiating CagA-SHP-2 complex formation. We also show that the CM sequence of CagA isolated from East Asian H. pylori (referred to as the E-CM sequence) binds PAR1b more strongly than that of CagA isolated from Western H. pylori (referred to as the W-CM sequence). Within Western CagA species, the ability to bind PAR1b is proportional to the number of W-CM sequences. Furthermore, the level of PAR1b-binding activity of CagA correlates with the magnitude of junctional defects and the degree of hummingbird phenotype induction. Our findings reveal that structural diversity in the CM sequence is an important determinant for the degree of virulence of CagA, a bacterial oncoprotein that is associated with gastric carcinogenesis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Calgranulina A/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Adenoviridae/genética , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Células COS , Calgranulina A/química , Calgranulina A/genética , Linhagem Celular , Polaridade Celular , Chlorocebus aethiops , Cães , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Vetores Genéticos , Helicobacter pylori/genética , Humanos , Rim/citologia , Dados de Sequência Molecular , Mutação , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Estômago/citologia , Junções Íntimas/metabolismo , Transdução Genética , Transfecção , Virulência/genética
18.
Biomed Res ; 37(1): 21-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26912137

RESUMO

More than 50% of people in the world are infected with Helicobacter pylori (H. pylori), which induces various gastric diseases. Especially, epidemiological studies have shown that H. pylori infection is a major risk factor for gastric cancer. It has been reported that the levels of interleukin (IL)-1ß are upregulated in gastric tissues of patients with H. pylori infection. In this study, we investigated the induction mechanism of IL-1ß during H. pylori infection. We found that IL-1ßmRNA and protein were induced in phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells after H. pylori infection. This IL-1ß production was inhibited by a caspase-1 inhibitor and a ROS inhibitor. Furthermore, K(+) efflux and Ca(2+) signaling were also involved in this process. These data suggest that NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3) and its complex, known as NLRP3 inflammasome, are involved in IL-1ß production during H. pylori infection because it is reported that NLRP3 inflammasome is activated by ROS, K(+) efflux and/or Ca(2+) signaling. These findings may provide therapeutic strategy for the control of gastric cancer in H. pylori-infected patients.


Assuntos
Infecções por Helicobacter/metabolismo , Helicobacter pylori , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Trifosfato de Adenosina/metabolismo , Sinalização do Cálcio , Caspase 1/metabolismo , Linhagem Celular , Espaço Extracelular/metabolismo , Infecções por Helicobacter/genética , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Humanos , Interleucina-1beta/genética , Espaço Intracelular/metabolismo , Macrófagos/imunologia , Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Sci Rep ; 6: 18346, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26739388

RESUMO

CagA, encoded by cytotoxin-associated gene A (cagA), is a major virulence factor of Helicobacter pylori, a gastric pathogen involved in the development of upper gastrointestinal diseases. Infection with cagA-positive H. pylori may also be associated with diseases outside the stomach, although the mechanisms through which H. pylori infection promotes extragastric diseases remain unknown. Here, we report that CagA is present in serum-derived extracellular vesicles, known as exosomes, in patients infected with cagA-positive H. pylori (n = 4). We also found that gastric epithelial cells inducibly expressing CagA secrete exosomes containing CagA. Addition of purified CagA-containing exosomes to gastric epithelial cells induced an elongated cell shape, indicating that the exosomes deliver functional CagA into cells. These findings indicated that exosomes secreted from CagA-expressing gastric epithelial cells may enter into circulation, delivering CagA to distant organs and tissues. Thus, CagA-containing exosomes may be involved in the development of extragastric disorders associated with cagA-positive H. pylori infection.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Exossomos/metabolismo , Helicobacter pylori/fisiologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Transporte Biológico , Biomarcadores , Linhagem Celular , Cromatografia Líquida , Infecções por Helicobacter/complicações , Infecções por Helicobacter/microbiologia , Humanos , Transporte Proteico , Neoplasias Gástricas/etiologia , Espectrometria de Massas em Tandem , Fatores de Virulência
20.
Nat Microbiol ; 1: 16026, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-27572445

RESUMO

Most if not all gastric cancers are associated with chronic infection of the stomach mucosa with Helicobacter pylori cagA-positive strains(1-4). Approximately 10% of gastric cancers also harbour Epstein-Barr virus (EBV) in the cancer cells(5,6). Following delivery into gastric epithelial cells via type IV secretion(7,8), the cagA-encoded CagA protein undergoes tyrosine phosphorylation on the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs initially by Src family kinases (SFKs) and then by c-Abl(9,10). Tyrosine-phosphorylated CagA binds to the pro-oncogenic protein tyrosine phosphatase SHP2 and thereby deregulates the phosphatase activity(11,12), which has been considered to play an important role in gastric carcinogenesis(13). Here we show that the SHP2 homologue SHP1 interacts with CagA independently of the EPIYA motif. The interaction potentiates the phosphatase activity of SHP1 that dampens the oncogenic action of CagA by dephosphorylating the CagA EPIYA motifs. In vitro infection of gastric epithelial cells with EBV induces SHP1 promoter hypermethylation, which strengthens phosphorylation-dependent CagA action via epigenetic downregulation of SHP1 expression. Clinical specimens of EBV-positive gastric cancers also exhibit SHP1 hypermethylation with reduced SHP1 expression. The results reveal that SHP1 is the long-sought phosphatase that can antagonize CagA. Augmented H. pylori CagA activity, via SHP1 inhibition, might also contribute to the development of EBV-positive gastric cancer.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Helicobacter pylori/patogenicidade , Herpesvirus Humano 4/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Proteína Tirosina Fosfatase não Receptora Tipo 6/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Metilação de DNA , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Humanos , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA