RESUMO
Although hormonal induction of parturition in cattle results in the successful delivery of healthy calves, the risk of retained fetal membrane is significantly increased. In a previous study, a combination of the long-acting glucocorticoid, triamcinolone acetonide, with a high dose of betamethasone partially normalized the placentomal gene expression during parturition; however, the incidence of retained fetal membrane remained high. This study further explored placentomal dysfunction and aimed to elucidate the mechanism of retained fetal membrane in parturition-induced cows. In this study, transcriptome analysis revealed that enhanced glucocorticoid exposure normalized the expression of a substantial fraction of genes in the cotyledons. In contrast, a significant reduction in the multiple signaling pathway activities, including interferon signaling, was found in the caruncles during induced parturition. Real-time PCR showed that the expression of interferon-tau in the caruncles, but not interferon-alpha or interferon-gamma, was significantly lower in induced parturition than spontaneous parturition. Interferon-stimulated gene expression was also significantly decreased in the caruncles during induced parturition. These results indicate that interferon signaling could be important for immunological control in placentomes during parturition. Additionally, this suggests that interferon-tau might be a pivotal ligand for interferon receptors in the caruncles. This study revealed that peripheral blood leukocytes in prepartum cows transcribed interferon-tau. Macrophage infiltration in the placentome is known to participate in the detachment of the fetal membrane from the caruncle. Thus, this study raised the possibility that immune cells migrating into the caruncles at parturition may act as a source of ligands that activate interferon signaling.
Assuntos
Doenças dos Bovinos , Placenta Retida , Animais , Bovinos , Doenças dos Bovinos/metabolismo , Membranas Extraembrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Parto , Placenta/metabolismo , Placenta Retida/metabolismo , Placenta Retida/veterinária , GravidezRESUMO
The emu (Dromaius novaehollandiae) is a useful poultry animal farmed for fat, meat, and eggs. Genetic structure and relationships among farmed emu populations in Japan are unknown and the number of microsatellite markers for genetic analysis of the emu is insufficient. In this study, we isolated 16 microsatellites from the emu genome and developed ten new microsatellite markers. These microsatellite markers were used to characterize three farm emu populations in Japan. The number of alleles ranged from 3 to 13 and the expected (HE) and observed heterozygosity (HO) of these microsatellite loci was 0.187-0.802 and 0.179-0.647, respectively. The polymorphic information content ranged from 0.176 to 0.786. Positive inbreeding coefficient (FIS) values were detected in all tested populations, and they ranged from 0.027 to 0.540. These results suggest that farm populations of the emu in Japan resulted from inbreeding. The fixation index (FST) values ranged from 0.026 to 0.061, and phylogenetic trees and population structure analysis confirmed no definitive genetic differentiation among the three populations. Therefore, these populations are at a relatively low level of genetic differentiation at present. The microsatellite markers developed in our study can be utilized for genetic analysis and preservation of genetic resources in the emu.
Assuntos
Dromaiidae/genética , Variação Genética/genética , Repetições de Microssatélites/genética , Alelos , Animais , Cruzamento/métodos , Fazendas , Feminino , Heterozigoto , Japão , Masculino , Filogenia , Polimorfismo Genético , Aves Domésticas/genéticaRESUMO
Emus (Dromaius novaehollandiae) are expected to become a novel poultry species for producing eggs, meat, and oil. In our previous studies, Japanese emu populations were predicted to have reduced genetic diversity through inbreeding. For a sustainable emu industry in Japan, it is necessary to understand the current genetic structure and relationships in dispersed farms. In this study, we investigated the genetic structure and relationships of six Japanese emu farms based on mitochondrial DNA and microsatellite polymorphisms. We analyzed the DNA sequences of the mitochondrial D-loop region in 157 individuals and detected four haplotypes with four nucleotide substitution sites (Hap-a, Hap-b, Hap-c, and Hap-d). Analysis of molecular variance revealed that 43.6% of total variance was "among population," and the FST value was 0.436 with significant genetic differentiation (P < 0.001). In microsatellite analysis, the expected (HE ) and observed (HO ) heterozygosities were 0.53-0.64 and 0.44-0.59, respectively. Phylogenetic trees and STRUCTURE analysis revealed that the six Japanese farmed emu populations could be divided into four genetically differentiated groups. Therefore, we identified genetic resources that may be useful in extending the genetic diversity of Japanese farms and are predicted to contribute to the conservation and reconstruction of populations.
Assuntos
Dromaiidae , Animais , Dromaiidae/genética , Fazendas , Japão , Filogenia , Óvulo , DNA Mitocondrial/genética , Repetições de Microssatélites/genéticaRESUMO
Characterization of carcass traits and fat quality is important to effectively produce and genetically improve emus. We investigated carcass traits in 309 emus. The meat production of female emus showed a significantly higher value than that of males (P < 0.01). The fat weight of male (9.232 ± 3.156 kg) was larger than that of the female (7.772 ± 2.697 kg). The fat yield (fat weight per kg of body weight) was strongly correlated to body weight (r = 0.79 and r = 0.75 in male and female, respectively). The fat melting points of females and males were 19.19 ± 3.39°C and 19.39 ± 3.39°C, respectively, without significant difference. Since the fat melting point did not correlate to body and fat weights, we predicted that it was an independent trait from body growth and was highly influenced by genetic elements. Percentages of palmitic, stearic, oleic, linoleic, and α-linolenic acids were 22.27 ± 3.50%, 9.37 ± 1.90%, 54.11 ± 5.17%, 13.54 ± 7.80% and 0.71 ± 0.59%, respectively. Among them, linoleic acid contents showed a wide individual difference (range 0.3-19.9%). The oleic/stearic acid ratio showed a negative correlation to the fat melting point. These results suggest that the fat melting point is a good indicator of C18:1/C18:0 ratio in emu fat.
Assuntos
Dromaiidae , Animais , Composição Corporal/genética , Peso Corporal/genética , Galinhas , Ácidos Graxos , Feminino , Japão , Ácidos Linoleicos , Ácidos Linolênicos , Masculino , Carne/análise , Ácidos EsteáricosRESUMO
The emu is a useful and new breed of poultry, but their genetic improvement has not advanced yet due to their very recent domestication. Pedigree information is difficult to record because of their complex reproduction system (polyandry). To identify parent-offspring relationships in the emu, parentage test based on polymorphic DNA markers have to be developed. In this study, we isolated more than 25,000 microsatellite (simple sequence repeat, SSR) regions from Next-generation sequencing data via the QDD pipeline and developed 49 SSR markers with polymorphism in the Japanese farmed emu. The dinucleotide motifs, (AC)n, (AT)n and (AG)n, were the most frequently detected and were found on 10,167 (38.55%), 8,114 (30.76%) and 4,796 (18.18%) contigs, respectively. Forty-nine novel SSR markers were characterized in 20 individuals and showed NA ranged from 2 to 12, with an average of 4.2. HE/HO ranged from 0.389/0.071 to 0.702/1.000 with an average of 0.601/0.515. PIC value ranged from 0.059 to 0.886 with an average of 0.528, and 17 of 49 markers showed a higher polymorphism than 0.500. Thirty-four individuals were genotyped using 12 markers, and CERVUS simulations based on genotype showed that parents of all offspring were identified with 0.9995-1.0 probability. Thus, 49 novel SSR markers and a robust method for parentage test for the Japanese emu were developed.
Assuntos
Dromaiidae/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites/genética , Animais , Feminino , Masculino , Linhagem , Polimorfismo Genético , Sequências Repetitivas de Ácido NucleicoRESUMO
The emu (Dromaius novaehollandiae) is a new poultry. In this study, we investigated the haplotype composition of mitochondrial DNA among emu populations farmed in Japan. We sequenced the D-loop region in 109 individuals, and detected four substitution sites and three haplotypes (Hap-a, -b, and -c). Hap-a was the most frequently observed haplotype in the Japanese populations. Although Hap-c was a rare haplotype in not only Japanese but also Australian populations, it was detected with high frequency in the Japanese farmed population. The AMOVA indicated that 9% of total variance was "among population". The FST value was 0.087 and genetic differentiation was significant (P<0.01). These results may contribute to conserving the genetic resources available for the Japanese emu industry.