Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 42(6): 1020-1034, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34911797

RESUMO

Aging is often associated with cognitive decline and recurrent cellular and molecular impairments. While life-long caloric restriction (CR) may delay age-related cognitive deterioration as well as the onset of neurologic disease, recent studies suggest that late-onset, short-term intermittent fasting (IF), may show comparable beneficial effects as those of life-long CR to improve brain health. We used a new optogenetic aging model to study the effects of late-onset (>18 months), short-term (four to six weeks) IF on age-related changes in GABAergic synaptic transmission, intracellular calcium (Ca2+) buffering, and cognitive status. We used male mice from a bacterial artificial chromosome (BAC) transgenic mouse line with stable expression of the channelrhodopsin-2 (ChR2) variant H134R [VGAT-ChR2(H134R)-EYFP] in a reduced synaptic preparation that allows for specific optogenetic light stimulation on GABAergic synaptic terminals across aging. We performed quantal analysis using the method of failures in this model and show that short-term IF reverses the age-related decrease in quantal content of GABAergic synapses. Likewise, short-term IF also reversed age-related changes in Ca2+ buffering and spontaneous GABAergic synaptic transmission in basal forebrain (BF) neurons of aged mice. Our findings suggest that late-onset short-term IF can reverse age-related physiological impairments in mouse BF neurons but that four weeks IF is not sufficient to reverse age-related cognitive decline.SIGNIFICANCE STATEMENT Here, we demonstrate plasticity of the aging brain and reversal of well-defined hallmarks of brain aging using short-term intermittent fasting (IF) initiated later in life. Few therapeutics are currently available to treat age-related neurologic dysfunction although synaptic dysfunction occurs during aging and neurologic disease is a topic of intense research. Using a new reduced synaptic preparation and optogenetic stimulation we are able to study age-related synaptic mechanisms in greater detail. Several neurophysiological parameters including quantal content were altered during aging and were reversed with short-term IF. These methods can be used to identify potential therapies to reverse physiological dysfunction during aging.


Assuntos
Envelhecimento/patologia , Prosencéfalo Basal/fisiologia , Cálcio/metabolismo , Jejum/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Envelhecimento/fisiologia , Animais , Prosencéfalo Basal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Optogenética
2.
Neuropharmacology ; 238: 109651, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414332

RESUMO

Disruption of synaptic function is believed to represent a common pathway contributing to cognitive decline during aging. Optogenetics is a prodigious tool for studying relationships between function and synaptic circuitry but models utilizing viral vectors present limitations. Careful characterization of the functionality of channel rhodopsin in transgenic models is crucial for determining whether they can be used across aging. This includes verifying the light sensitivity of the protein and confirming its ability to generate action potentials in response to light stimulation. We combined in vitro optogenetic methodology and a reduced synaptic preparation of acutely isolated neurons to determine if the ChR2(H134R)-eYFP vGAT mouse model is well-suited for aging studies. We used neurons from young (2-6 mo), middle-aged (10-14 mo) and aged (17-25 mo) bacterial artificial chromosome (BAC) transgenic mouse line with stable expression of the channelrhodopsin-2 (ChR2) variant H134R in GABAergic cell populations. Cellular physiology and calcium dynamics were assessed in basal forebrain (BF) neurons using patch-clamp recording and fura-2 microfluorimetry, alongside 470 nm light stimulation of the transgenic ChR2 channel to characterize a wide array of physiological functions known to decline with age. We found ChR2 expression is functionally maintained across aging, while spontaneous and optically evoked inhibitory postsynaptic currents, and quantal content were decreased. Aged mice also showed an increase in intracellular calcium buffering. These results, which are on par with previous observations, demonstrate that the optogenetic vGAT BAC mouse model is well-suited for investigating age-related changes in calcium signaling and synaptic transmission.


Assuntos
Optogenética , Rodopsina , Camundongos , Animais , Rodopsina/genética , Rodopsina/metabolismo , Optogenética/métodos , Cálcio/metabolismo , Transmissão Sináptica , Camundongos Transgênicos , Envelhecimento , Homeostase , Channelrhodopsins/genética , Channelrhodopsins/metabolismo
3.
Front Aging Neurosci ; 13: 673155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122049

RESUMO

The antidepressant drug amitriptyline is used in the treatment of clinical depression and a variety of neurological conditions such as anxiety, neuropathic pain disorders and migraine. Antidepressants are associated with both therapeutic and untoward effects, and their use in the elderly has tripled since the mid-1990s. Because of this widespread use, we are interested in testing the acute effects of amitriptyline on synaptic transmission at therapeutic concentrations well below those that block voltage-gated calcium channels. We found that 3 µM amitriptyline reduced the frequency of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) and reduced quantal content in mice at ages of 7-10 mo. and 23-25 mo., suggesting a presynaptic mechanism of action that does not diminish with age. We employed a reduced synaptic preparation of the basal forebrain (BF) and a new optogenetic aging model utilizing a bacterial artificial chromosome (BAC) transgenic mouse line with stable expression of the channelrhodopsin-2 (ChR2) variant H134R specific for GABAergic neurons [VGAT-ChR2(H134R)-EYFP]. This model enables optogenetic light stimulation of specific GABAergic synaptic terminals across aging. Age-related impairment of circadian behavior was used to confirm predictable age-related changes associated with this model. Our results suggest that low concentrations of amitriptyline act presynaptically to reduce neurotransmitter release and that this action is maintained during aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA