Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(26): 266901, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38996326

RESUMO

Laser cooling of solids currently has a temperature floor of 50-100 K. We propose a method that could overcome this using defects, such as diamond color centers, with narrow electronic manifolds and bright optical transitions. It exploits the dressed states formed in strong fields which extend the set of phonon transitions and have tunable energies. This allows an enhancement of the cooling power and diminishes the effect of inhomogeneous broadening. We demonstrate these effects theoretically for the silicon vacancy and the germanium vacancy, and discuss the role of background absorption, phonon-assisted emission, and nonradiative decay.

2.
Small ; 15(34): e1902728, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31276302

RESUMO

Carrier interactions in 2D nanostructures are of central importance not only in condensed-matter physics but also for a wide range of optoelectronic and photonic applications. Here, new insights into the behavior of photoinduced carriers in layered platinum diselenide (PtSe2 ) through ultrafast time-resolved pump-probe and nonlinear optical measurements are presented. The measurements reveal the temporal evolution of carrier relaxation, chemical potential and bandgap renormalization in PtSe2 . These results imply that few-layer PtSe2 has a semiconductor-like carrier relaxation instead of a metal-like one. The relaxation follows a triple-exponential decay process and exhibits thickness-dependent relaxation times. This occurs along with a band-filling effect, which can be controlled based on the number of layers and may be applied in saturable absorption for generating ultrafast laser pulses. The findings may provide means to study many-body physics in 2D materials as well as potentially leading to applications in the field of optoelectronics and ultrafast photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA