Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(27): 10964-9, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23781103

RESUMO

Codon use among the three domains of life is not confined to the universal genetic code. With only 22 tRNA genes in mammalian mitochondria, exceptions from the universal code are necessary for proper translation. A particularly interesting deviation is the decoding of the isoleucine AUA codon as methionine by the one mitochondrial-encoded tRNA(Met). This tRNA decodes AUA and AUG in both the A- and P-sites of the metazoan mitochondrial ribosome. Enrichment of posttranscriptional modifications is a commonly appropriated mechanism for modulating decoding rules, enabling some tRNA functions while restraining others. In this case, a modification of cytidine, 5-formylcytidine (f(5)C), at the wobble position-34 of human mitochondrial tRNA(f5CAU)(Met) (hmtRNA(f5CAU)(Met)) enables expanded decoding of AUA, resulting in a deviation in the genetic code. Visualization of the codon•anticodon interaction by X-ray crystallography revealed that recognition of both A and G at the third position of the codon occurs in the canonical Watson-Crick geometry. A modification-dependent shift in the tautomeric equilibrium toward the rare imino-oxo tautomer of cytidine stabilizes the f(5)C34•A base pair geometry with two hydrogen bonds.


Assuntos
Códon/química , Códon/genética , RNA de Transferência/química , RNA de Transferência/genética , Pareamento de Bases , Cristalografia por Raios X , Citidina/análogos & derivados , Citidina/química , Humanos , Isomerismo , Modelos Moleculares , Conformação de Ácido Nucleico , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/genética
2.
Biochemistry ; 54(48): 7142-55, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26598179

RESUMO

Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg(2+) for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with three Mg(2+) ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed on the basis of ∼36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low-resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis.


Assuntos
Alendronato/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Naftóis/metabolismo , Sesquiterpenos/metabolismo , Streptomyces coelicolor/enzimologia , Cristalografia por Raios X , Ciclização , Magnésio/metabolismo , Modelos Moleculares , Fosfatos de Poli-Isoprenil/metabolismo , Estrutura Terciária de Proteína , Streptomyces coelicolor/química , Streptomyces coelicolor/metabolismo
3.
RNA ; 19(12): 1791-801, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24152548

RESUMO

The ribosome decodes mRNA by monitoring the geometry of codon-anticodon base-pairing using a set of universally conserved 16S rRNA nucleotides within the conformationally dynamic decoding site. By applying single-molecule FRET and X-ray crystallography, we have determined that conditional-lethal, streptomycin-dependence mutations in ribosomal protein S12 interfere with tRNA selection by allowing conformational distortions of the decoding site that impair GTPase activation of EF-Tu during the tRNA selection process. Distortions in the decoding site are reversed by streptomycin or by a second-site suppressor mutation in 16S rRNA. These observations encourage a refinement of the current model for decoding, wherein ribosomal protein S12 and the decoding site collaborate to optimize codon recognition and substrate discrimination during the early stages of the tRNA selection process.


Assuntos
Proteínas de Bactérias/química , Proteínas Ribossômicas/química , Thermus thermophilus/genética , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli , Modelos Moleculares , Conformação de Ácido Nucleico , Mutação Puntual , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , RNA de Transferência de Fenilalanina/química , Proteínas Ribossômicas/genética , Ribossomos/química
4.
Antimicrob Agents Chemother ; 58(8): 4308-17, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24820088

RESUMO

Streptomycin is a bactericidal antibiotic that induces translational errors. It binds to the 30S ribosomal subunit, interacting with ribosomal protein S12 and with 16S rRNA through contacts with the phosphodiester backbone. To explore the structural basis for streptomycin resistance, we determined the X-ray crystal structures of 30S ribosomal subunits from six streptomycin-resistant mutants of Thermus thermophilus both in the apo form and in complex with streptomycin. Base substitutions at highly conserved residues in the central pseudoknot of 16S rRNA produce novel hydrogen-bonding and base-stacking interactions. These rearrangements in secondary structure produce only minor adjustments in the three-dimensional fold of the pseudoknot. These results illustrate how antibiotic resistance can occur as a result of small changes in binding site conformation.


Assuntos
Farmacorresistência Bacteriana/genética , Mutação Puntual , RNA Ribossômico 16S/metabolismo , Proteínas Ribossômicas/química , Subunidades Ribossômicas Menores de Bactérias/química , Antibacterianos/química , Antibacterianos/farmacologia , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico 16S/química , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Bactérias/efeitos dos fármacos , Subunidades Ribossômicas Menores de Bactérias/genética , Estreptomicina/química , Estreptomicina/farmacologia , Thermus thermophilus/química , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/genética
5.
EMBO J ; 28(6): 755-65, 2009 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-19229291

RESUMO

We have used single-particle reconstruction in cryo-electron microscopy to determine a structure of the Thermus thermophilus ribosome in which the ternary complex of elongation factor Tu (EF-Tu), tRNA and guanine nucleotide has been trapped on the ribosome using the antibiotic kirromycin. This represents the state in the decoding process just after codon recognition by tRNA and the resulting GTP hydrolysis by EF-Tu, but before the release of EF-Tu from the ribosome. Progress in sample purification and image processing made it possible to reach a resolution of 6.4 A. Secondary structure elements in tRNA, EF-Tu and the ribosome, and even GDP and kirromycin, could all be visualized directly. The structure reveals a complex conformational rearrangement of the tRNA in the A/T state and the interactions with the functionally important switch regions of EF-Tu crucial to GTP hydrolysis. Thus, the structure provides insights into the molecular mechanism of signalling codon recognition from the decoding centre of the 30S subunit to the GTPase centre of EF-Tu.


Assuntos
Fator Tu de Elongação de Peptídeos/metabolismo , Ribossomos/enzimologia , Thermus thermophilus/enzimologia , Microscopia Crioeletrônica , Ativação Enzimática , Guanosina Difosfato/química , Modelos Moleculares , Fator Tu de Elongação de Peptídeos/química , Fator Tu de Elongação de Peptídeos/ultraestrutura , Estrutura Secundária de Proteína , Piridonas/química , RNA de Transferência/química , RNA de Transferência/ultraestrutura , Ribossomos/química , Ribossomos/ultraestrutura , Eletricidade Estática
6.
J Synchrotron Radiat ; 19(Pt 3): 462-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22514186

RESUMO

Early stage experimental data in structural biology is generally unmaintained and inaccessible to the public. It is increasingly believed that this data, which forms the basis for each macromolecular structure discovered by this field, must be archived and, in due course, published. Furthermore, the widespread use of shared scientific facilities such as synchrotron beamlines complicates the issue of data storage, access and movement, as does the increase of remote users. This work describes a prototype system that adapts existing federated cyberinfrastructure technology and techniques to significantly improve the operational environment for users and administrators of synchrotron data collection facilities used in structural biology. This is achieved through software from the Virtual Data Toolkit and Globus, bringing together federated users and facilities from the Stanford Synchrotron Radiation Lightsource, the Advanced Photon Source, the Open Science Grid, the SBGrid Consortium and Harvard Medical School. The performance and experience with the prototype provide a model for data management at shared scientific facilities.


Assuntos
Disseminação de Informação , Armazenamento e Recuperação da Informação , Proteínas/química , Software , Síncrotrons , Estados Unidos
7.
Nat Struct Mol Biol ; 14(6): 498-502, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17496902

RESUMO

One of the most prevalent base modifications involved in decoding is uridine 5-oxyacetic acid at the wobble position of tRNA. It has been known for several decades that this modification enables a single tRNA to decode all four codons in a degenerate codon box. We have determined structures of an anticodon stem-loop of tRNA(Val) containing the modified uridine with all four valine codons in the decoding site of the 30S ribosomal subunit. An intramolecular hydrogen bond involving the modification helps to prestructure the anticodon loop. We found unusual base pairs with the three noncomplementary codon bases, including a G.U base pair in standard Watson-Crick geometry, which presumably involves an enol form for the uridine. These structures suggest how a modification in the uridine at the wobble position can expand the decoding capability of a tRNA.


Assuntos
Anticódon/genética , Modelos Moleculares , RNA de Transferência de Valina/genética , RNA de Transferência de Valina/fisiologia , Uridina/química , Sequência de Aminoácidos , Pareamento de Bases , Sequência de Bases , Códon/genética , Cristalografia , Dados de Sequência Molecular , Estrutura Molecular
8.
J Mol Biol ; 432(4): 913-929, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31945376

RESUMO

Three of six arginine codons (CGU, CGC, and CGA) are decoded by two Escherichia coli tRNAArg isoacceptors. The anticodon stem and loop (ASL) domains of tRNAArg1 and tRNAArg2 both contain inosine and 2-methyladenosine modifications at positions 34 (I34) and 37 (m2A37). tRNAArg1 is also modified from cytidine to 2-thiocytidine at position 32 (s2C32). The s2C32 modification is known to negate wobble codon recognition of the rare CGA codon by an unknown mechanism, while still allowing decoding of CGU and CGC. Substitution of s2C32 for C32 in the Saccharomyces cerevisiae tRNAIleIAU anticodon stem and loop domain (ASL) negates wobble decoding of its synonymous A-ending codon, suggesting that this function of s2C at position 32 is a generalizable property. X-ray crystal structures of variously modified ASLArg1ICG and ASLArg2ICG constructs bound to cognate and wobble codons on the ribosome revealed the disruption of a C32-A38 cross-loop interaction but failed to fully explain the means by which s2C32 restricts I34 wobbling. Computational studies revealed that the adoption of a spatially broad inosine-adenosine base pair at the wobble position of the codon cannot be maintained simultaneously with the canonical ASL U-turn motif. C32-A38 cross-loop interactions are required for stability of the anticodon/codon interaction in the ribosomal A-site.


Assuntos
Códon/genética , Citidina/análogos & derivados , RNA de Transferência/metabolismo , Biologia Computacional , Cristalografia por Raios X , Citidina/metabolismo , Inosina/metabolismo , Nucleosídeos/metabolismo , RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinâmica
9.
Nat Struct Mol Biol ; 11(12): 1251-2, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15558050

RESUMO

Here we report the crystal structures of I.C and I.A wobble base pairs in the context of the ribosomal decoding center, clearly showing that the I.A base pair is of an I(anti).A(anti) conformation, as predicted by Crick. Additionally, the structures enable the observation of changes in the anticodon to allow purine-purine base pairing, the 'widest' base pair geometry allowed in the wobble position.


Assuntos
Anticódon/química , Anticódon/metabolismo , Pareamento de Bases , Purinas/química , Purinas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Anticódon/genética , Sequência de Bases , Cristalografia por Raios X , Modelos Moleculares , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA de Transferência de Arginina/química , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/metabolismo , Ribossomos/genética
10.
Nat Struct Mol Biol ; 11(12): 1186-91, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15558052

RESUMO

The natural modification of specific nucleosides in many tRNAs is essential during decoding of mRNA by the ribosome. For example, tRNA(Lys)(UUU) requires the modification N6-threonylcarbamoyladenosine at position 37 (t(6)A37), adjacent and 3' to the anticodon, to bind AAA in the A site of the ribosomal 30S subunit. Moreover, it can only bind both AAA and AAG lysine codons when doubly modified with t(6)A37 and either 5-methylaminomethyluridine or 2-thiouridine at the wobble position (mnm(5)U34 or s(2)U34). Here we report crystal structures of modified tRNA anticodon stem-loops bound to the 30S ribosomal subunit with lysine codons in the A site. These structures allow the rationalization of how modifications in the anticodon loop enable decoding of both lysine codons AAA and AAG.


Assuntos
Códon/química , Códon/metabolismo , Conformação de Ácido Nucleico , RNA de Transferência de Lisina/química , RNA de Transferência de Lisina/metabolismo , Anticódon/química , Anticódon/metabolismo , Pareamento de Bases , Códon/genética , Cristalografia por Raios X , Modelos Moleculares , Estabilidade de RNA , RNA de Transferência de Lisina/genética , Thermus thermophilus/química , Thermus thermophilus/genética
11.
Nucleic Acids Res ; 31(11): 2852-64, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12771212

RESUMO

Ubiquitous high-mobility-group (HMGB) chromosomal proteins bind DNA in a non-sequence- specific fashion to promote chromatin function and gene regulation. Minor groove DNA binding of the HMG domain induces substantial DNA bending toward the major groove, and several interfacial residues contribute by DNA intercalation. The role of the intercalating residues in DNA binding, bending and specificity was systematically examined for a series of mutant Drosophila HMGB (HMG-D) proteins. The primary intercalating residue of HMG-D, Met13, is required both for high-affinity DNA binding and normal DNA bending. Leu9 and Tyr12 directly interact with Met13 and are required for HMG domain stability in addition to linear DNA binding and bending, which is an important function for these residues. In contrast, DNA binding and bending is retained in truncations of intercalating residues Val32 and Thr33 to alanine, but DNA bending is decreased for the glycine substitutions. Furthermore, substitution of the intercalating residues with those predicted to be involved in the specificity of the HMG domain transcription factors results in increased DNA affinity and decreased DNA bending without increased specificity. These studies reveal the importance of residues that buttress intercalating residues and suggest that features of the HMG domain other than a few base-specific hydrogen bonds distinguish the sequence-specific and non-sequence-specific HMG domain functions.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/metabolismo , Sequência de Aminoácidos , Aminoácidos/fisiologia , Animais , Sítios de Ligação , DNA/química , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas de Grupo de Alta Mobilidade/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Alinhamento de Sequência
12.
J Mol Biol ; 416(4): 467-85, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22227389

RESUMO

Human tRNA(Lys3)(UUU) (htRNA(Lys3)(UUU)) decodes the lysine codons AAA and AAG during translation and also plays a crucial role as the primer for HIV-1 (human immunodeficiency virus type 1) reverse transcription. The posttranscriptional modifications 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U(34)), 2-methylthio-N(6)-threonylcarbamoyladenosine (ms(2)t(6)A(37)), and pseudouridine (Ψ(39)) in the tRNA's anticodon domain are critical for ribosomal binding and HIV-1 reverse transcription. To understand the importance of modified nucleoside contributions, we determined the structure and function of this tRNA's anticodon stem and loop (ASL) domain with these modifications at positions 34, 37, and 39, respectively (hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39)). Ribosome binding assays in vitro revealed that the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) bound AAA and AAG codons, whereas binding of the unmodified ASL(Lys3)(UUU) was barely detectable. The UV hyperchromicity, the circular dichroism, and the structural analyses indicated that Ψ(39) enhanced the thermodynamic stability of the ASL through base stacking while ms(2)t(6)A(37) restrained the anticodon to adopt an open loop conformation that is required for ribosomal binding. The NMR-restrained molecular-dynamics-derived solution structure revealed that the modifications provided an open, ordered loop for codon binding. The crystal structures of the hASL(Lys3)(UUU)-mcm(5)s(2)U(34);ms(2)t(6)A(37);Ψ(39) bound to the 30S ribosomal subunit with each codon in the A site showed that the modified nucleotides mcm(5)s(2)U(34) and ms(2)t(6)A(37) participate in the stability of the anticodon-codon interaction. Importantly, the mcm(5)s(2)U(34)·G(3) wobble base pair is in the Watson-Crick geometry, requiring unusual hydrogen bonding to G in which mcm(5)s(2)U(34) must shift from the keto to the enol form. The results unambiguously demonstrate that modifications pre-structure the anticodon as a key prerequisite for efficient and accurate recognition of cognate and wobble codons.


Assuntos
Códon/química , RNA de Transferência de Lisina/química , Anticódon/química , Pareamento de Bases , Dicroísmo Circular , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Pseudouridina/química , Termodinâmica , Tiouridina/análogos & derivados , Tiouridina/química
13.
Science ; 326(5953): 688-694, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19833920

RESUMO

The ribosome selects a correct transfer RNA (tRNA) for each amino acid added to the polypeptide chain, as directed by messenger RNA. Aminoacyl-tRNA is delivered to the ribosome by elongation factor Tu (EF-Tu), which hydrolyzes guanosine triphosphate (GTP) and releases tRNA in response to codon recognition. The signaling pathway that leads to GTP hydrolysis upon codon recognition is critical to accurate decoding. Here we present the crystal structure of the ribosome complexed with EF-Tu and aminoacyl-tRNA, refined to 3.6 angstrom resolution. The structure reveals details of the tRNA distortion that allows aminoacyl-tRNA to interact simultaneously with the decoding center of the 30S subunit and EF-Tu at the factor binding site. A series of conformational changes in EF-Tu and aminoacyl-tRNA suggests a communication pathway between the decoding center and the guanosine triphosphatase center of EF-Tu.


Assuntos
Fator Tu de Elongação de Peptídeos/química , RNA Bacteriano/química , Aminoacil-RNA de Transferência/química , Ribossomos/química , Cristalografia por Raios X , Ativação Enzimática , GTP Fosfo-Hidrolases/metabolismo , Código Genético , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Treonina/química , Thermus thermophilus
14.
Science ; 313(5795): 1935-42, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16959973

RESUMO

The crystal structure of the bacterial 70S ribosome refined to 2.8 angstrom resolution reveals atomic details of its interactions with messenger RNA (mRNA) and transfer RNA (tRNA). A metal ion stabilizes a kink in the mRNA that demarcates the boundary between A and P sites, which is potentially important to prevent slippage of mRNA. Metal ions also stabilize the intersubunit interface. The interactions of E-site tRNA with the 50S subunit have both similarities and differences compared to those in the archaeal ribosome. The structure also rationalizes much biochemical and genetic data on translation.


Assuntos
Proteínas de Bactérias/química , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Proteínas Ribossômicas/química , Ribossomos/química , Ribossomos/ultraestrutura , Thermus thermophilus/química , Anticódon , Proteínas de Bactérias/metabolismo , Códon , Cristalização , Cristalografia por Raios X , Magnésio/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Peptidil Transferases/química , Peptidil Transferases/metabolismo , Biossíntese de Proteínas , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA de Transferência/química , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/metabolismo , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/ultraestrutura
15.
Cell ; 123(7): 1255-66, 2005 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-16377566

RESUMO

During protein synthesis, translational release factors catalyze the release of the polypeptide chain when a stop codon on the mRNA reaches the A site of the ribosome. The detailed mechanism of this process is currently unknown. We present here the crystal structures of the ribosome from Thermus thermophilus with RF1 and RF2 bound to their cognate stop codons, at resolutions of 5.9 Angstrom and 6.7 Angstrom, respectively. The structures reveal details of interactions of the factors with the ribosome and mRNA, including elements previously implicated in decoding and peptide release. They also shed light on conformational changes both in the factors and in the ribosome during termination. Differences seen in the interaction of RF1 and RF2 with the L11 region of the ribosome allow us to rationalize previous biochemical data. Finally, this work demonstrates the feasibility of crystallizing ribosomes with bound factors at a defined state along the translational pathway.


Assuntos
Códon de Terminação/química , Fatores de Terminação de Peptídeos/química , Ribossomos/química , Sequência de Aminoácidos , Cristalografia por Raios X/métodos , Cristalografia por Raios X/estatística & dados numéricos , Modelos Moleculares , Dados de Sequência Molecular , Fatores de Terminação de Peptídeos/metabolismo , Peptídeos/metabolismo , Ribossomos/metabolismo , Alinhamento de Sequência , Thermus thermophilus
16.
Cell ; 111(5): 721-32, 2002 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-12464183

RESUMO

A structural and mechanistic explanation for the selection of tRNAs by the ribosome has been elusive. Here, we report crystal structures of the 30S ribosomal subunit with codon and near-cognate tRNA anticodon stem loops bound at the decoding center and compare affinities of equivalent complexes in solution. In ribosomal interactions with near-cognate tRNA, deviation from Watson-Crick geometry results in uncompensated desolvation of hydrogen-bonding partners at the codon-anticodon minor groove. As a result, the transition to a closed form of the 30S induced by cognate tRNA is unfavorable for near-cognate tRNA unless paromomycin induces part of the rearrangement. We conclude that stabilization of a closed 30S conformation is required for tRNA selection, and thereby structurally rationalize much previous data on translational fidelity.


Assuntos
RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anticódon/química , Anticódon/metabolismo , Pareamento de Bases , Ligação Competitiva , Códon/química , Códon/metabolismo , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Paromomicina/metabolismo , Paromomicina/farmacologia , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , RNA de Transferência de Fenilalanina/química , RNA de Transferência de Fenilalanina/metabolismo , Ribossomos/química , Relação Estrutura-Atividade , Termodinâmica , Thermus thermophilus
17.
Health Care Manage Rev ; 27(1): 76-95, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11765898

RESUMO

In spite of the technological sophistication and clinical excellence of the U.S. health care industry and annual health expenditures in excess of a trillion dollars, the overall health status of the American population is comparatively poor. The BCHS in west central Florida sought to improve the health status of the communities that it serves. Known by the acronym CHAPIR, an information-driven health status decision support system was developed, pilot tested, and is now fully implemented throughout the BCHS. The methodological approach, quantitative indicators, report format components, and management implications of the system are described.


Assuntos
Planejamento em Saúde Comunitária/organização & administração , Promoção da Saúde/organização & administração , Indicadores Básicos de Saúde , Hospitais Comunitários/organização & administração , Sistemas Multi-Institucionais/organização & administração , Área Programática de Saúde , Criança , Proteção da Criança , Feminino , Florida/epidemiologia , Humanos , Bem-Estar Materno , Morbidade , Mortalidade , Estudos de Casos Organizacionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA