Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Neurosci ; 40(11): 2269-2281, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32015023

RESUMO

A prominent hypothesis regarding the pathophysiology of autism is that an increase in the balance between neural excitation and inhibition results in an increase in neural responses. However, previous reports of population-level response magnitude in individuals with autism have been inconsistent. Critically, network interactions have not been considered in previous neuroimaging studies of excitation and inhibition imbalance in autism. In particular, a defining characteristic of cortical organization is its hierarchical and interactive structure; sensory and cognitive systems are comprised of networks where later stages inherit and build upon the processing of earlier input stages, and also influence and shape earlier stages by top-down modulation. Here we used the well established connections of the human visual system to examine response magnitudes in a higher-order motion processing region [middle temporal area (MT+)] and its primary input region (V1). Simple visual stimuli were presented to adult individuals with autism spectrum disorders (ASD; n = 24, mean age 23 years, 8 females) and neurotypical controls (n = 24, mean age 22, 8 females) during fMRI scanning. We discovered a strong dissociation of fMRI response magnitude between region MT+ and V1 in individuals with ASD: individuals with high MT+ responses had attenuated V1 responses. The magnitude of MT+ amplification and of V1 attenuation was associated with autism severity, appeared to result from amplified suppressive feedback from MT+ to V1, and was not present in neurotypical controls. Our results reveal the potential role of altered hierarchical network interactions in the pathophysiology of ASD.SIGNIFICANCE STATEMENT An imbalance between neural excitation and inhibition, resulting in increased neural responses, has been suggested as a pathophysiological pathway to autism, but direct evidence from humans is lacking. In the current study we consider the role of interactions between stages of sensory processing when testing increased neural responses in individuals with autism. We used the well known hierarchical structure of the visual motion pathway to demonstrate dissociation in the fMRI response magnitude between adjacent stages of processing in autism: responses are attenuated in a primary visual area but amplified in a subsequent higher-order area. This response dissociation appears to rely on enhanced suppressive feedback between regions and reveals a previously unknown cortical network alteration in autism.


Assuntos
Percepção de Movimento/fisiologia , Rede Nervosa/fisiopatologia , Lobo Temporal/fisiopatologia , Adulto , Transtorno do Espectro Autista/fisiopatologia , Mapeamento Encefálico , Movimentos Oculares/fisiologia , Feminino , Movimentos da Cabeça/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Inibição Neural/fisiologia , Estimulação Luminosa , Desempenho Psicomotor/fisiologia , Adulto Jovem
2.
Radiology ; 295(1): 171-180, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32043950

RESUMO

Background The hardware and software differences between MR vendors and individual sites influence the quantification of MR spectroscopy data. An analysis of a large data set may help to better understand sources of the total variance in quantified metabolite levels. Purpose To compare multisite quantitative brain MR spectroscopy data acquired in healthy participants at 26 sites by using the vendor-supplied single-voxel point-resolved spectroscopy (PRESS) sequence. Materials and Methods An MR spectroscopy protocol to acquire short-echo-time PRESS data from the midparietal region of the brain was disseminated to 26 research sites operating 3.0-T MR scanners from three different vendors. In this prospective study, healthy participants were scanned between July 2016 and December 2017. Data were analyzed by using software with simulated basis sets customized for each vendor implementation. The proportion of total variance attributed to vendor-, site-, and participant-related effects was estimated by using a linear mixed-effects model. P values were derived through parametric bootstrapping of the linear mixed-effects models (denoted Pboot). Results In total, 296 participants (mean age, 26 years ± 4.6; 155 women and 141 men) were scanned. Good-quality data were recorded from all sites, as evidenced by a consistent linewidth of N-acetylaspartate (range, 4.4-5.0 Hz), signal-to-noise ratio (range, 174-289), and low Cramér-Rao lower bounds (≤5%) for all of the major metabolites. Among the major metabolites, no vendor effects were found for levels of myo-inositol (Pboot > .90), N-acetylaspartate and N-acetylaspartylglutamate (Pboot = .13), or glutamate and glutamine (Pboot = .11). Among the smaller resonances, no vendor effects were found for ascorbate (Pboot = .08), aspartate (Pboot > .90), glutathione (Pboot > .90), or lactate (Pboot = .28). Conclusion Multisite multivendor single-voxel MR spectroscopy studies performed at 3.0 T can yield results that are coherent across vendors, provided that vendor differences in pulse sequence implementation are accounted for in data analysis. However, the site-related effects on variability were more profound and suggest the need for further standardization of spectroscopic protocols. © RSNA, 2020 Online supplemental material is available for this article.


Assuntos
Encéfalo/metabolismo , Comércio , Espectroscopia de Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Estudos Prospectivos , Adulto Jovem
3.
Neuroimage ; 184: 925-931, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312807

RESUMO

There is large individual variability in human neural responses and perceptual abilities. The factors that give rise to these individual differences, however, remain largely unknown. To examine these factors, we measured fMRI responses to moving gratings in the motion-selective region MT, and perceptual duration thresholds for motion direction discrimination. Further, we acquired MR spectroscopy data, which allowed us to quantify an index of neurotransmitter levels in the region of area MT. These three measurements were conducted in separate experimental sessions within the same group of male and female subjects. We show that stronger Glx (glutamate + glutamine) signals in the MT region are associated with both higher fMRI responses and superior psychophysical task performance. Our results suggest that greater baseline levels of glutamate within MT facilitate motion perception by increasing neural responses in this region.


Assuntos
Ácido Glutâmico/metabolismo , Percepção de Movimento/fisiologia , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Estimulação Luminosa , Psicofísica , Córtex Visual/metabolismo , Vias Visuais/metabolismo , Vias Visuais/fisiologia , Adulto Jovem
4.
Neuroimage ; 191: 537-548, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840905

RESUMO

Accurate and reliable quantification of brain metabolites measured in vivo using 1H magnetic resonance spectroscopy (MRS) is a topic of continued interest. Aside from differences in the basic approach to quantification, the quantification of metabolite data acquired at different sites and on different platforms poses an additional methodological challenge. In this study, spectrally edited γ-aminobutyric acid (GABA) MRS data were analyzed and GABA levels were quantified relative to an internal tissue water reference. Data from 284 volunteers scanned across 25 research sites were collected using GABA+ (GABA + co-edited macromolecules (MM)) and MM-suppressed GABA editing. The unsuppressed water signal from the volume of interest was acquired for concentration referencing. Whole-brain T1-weighted structural images were acquired and segmented to determine gray matter, white matter and cerebrospinal fluid voxel tissue fractions. Water-referenced GABA measurements were fully corrected for tissue-dependent signal relaxation and water visibility effects. The cohort-wide coefficient of variation was 17% for the GABA + data and 29% for the MM-suppressed GABA data. The mean within-site coefficient of variation was 10% for the GABA + data and 19% for the MM-suppressed GABA data. Vendor differences contributed 53% to the total variance in the GABA + data, while the remaining variance was attributed to site- (11%) and participant-level (36%) effects. For the MM-suppressed data, 54% of the variance was attributed to site differences, while the remaining 46% was attributed to participant differences. Results from an exploratory analysis suggested that the vendor differences were related to the unsuppressed water signal acquisition. Discounting the observed vendor-specific effects, water-referenced GABA measurements exhibit similar levels of variance to creatine-referenced GABA measurements. It is concluded that quantification using internal tissue water referencing is a viable and reliable method for the quantification of in vivo GABA levels.


Assuntos
Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/normas , Ácido gama-Aminobutírico/análise , Adolescente , Adulto , Conjuntos de Dados como Assunto , Feminino , Humanos , Espectroscopia de Ressonância Magnética/métodos , Masculino , Valores de Referência , Água , Adulto Jovem
5.
J Vis ; 19(4): 12, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952163

RESUMO

What we see depends on the spatial context in which it appears. Previous work has linked the suppression of perceived contrast by surrounding stimuli to reduced neural responses in early visual cortex. This surround suppression depends on at least two separable neural mechanisms, "low-level" and "higher level," which can be differentiated by their response characteristics. We used electroencephalography to demonstrate for the first time that human occipital neural responses show evidence of these two suppression mechanisms. Eighteen adults (10 women, 8 men) each participated in three experimental sessions, in which they viewed visual stimuli through a mirror stereoscope. The first session was used to identify the C1 component, while the second and third comprised the main experiment. Event-related potentials were measured in response to center gratings either with no surround or with surrounding gratings oriented parallel or orthogonal, and presented in either the same eye (monoptic) or the opposite eye (dichoptic). We found that the earliest component of an event-related potential (C1; ∼60 ms) was suppressed by surrounding stimuli, but that suppression did not depend on surround configuration. This suggests a suppression mechanism that is not tuned for relative orientation acting on the earliest cortical response to the target. A later response component (N1; ∼160 ms) showed stronger suppression for parallel and monoptic surrounds, consistent with our earlier psychophysical results and a second form of suppression that is binocular and orientation tuned. We conclude that these two forms of surround suppression have distinct response time courses in the human visual system, which can be differentiated using electrophysiology.


Assuntos
Lobo Occipital/fisiologia , Orientação Espacial/fisiologia , Córtex Visual/fisiologia , Adulto , Eletroencefalografia , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Psicofísica , Fatores de Tempo
6.
Neuroimage ; 159: 32-45, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716717

RESUMO

Magnetic resonance spectroscopy (MRS) is the only biomedical imaging method that can noninvasively detect endogenous signals from the neurotransmitter γ-aminobutyric acid (GABA) in the human brain. Its increasing popularity has been aided by improvements in scanner hardware and acquisition methodology, as well as by broader access to pulse sequences that can selectively detect GABA, in particular J-difference spectral editing sequences. Nevertheless, implementations of GABA-edited MRS remain diverse across research sites, making comparisons between studies challenging. This large-scale multi-vendor, multi-site study seeks to better understand the factors that impact measurement outcomes of GABA-edited MRS. An international consortium of 24 research sites was formed. Data from 272 healthy adults were acquired on scanners from the three major MRI vendors and analyzed using the Gannet processing pipeline. MRS data were acquired in the medial parietal lobe with standard GABA+ and macromolecule- (MM-) suppressed GABA editing. The coefficient of variation across the entire cohort was 12% for GABA+ measurements and 28% for MM-suppressed GABA measurements. A multilevel analysis revealed that most of the variance (72%) in the GABA+ data was accounted for by differences between participants within-site, while site-level differences accounted for comparatively more variance (20%) than vendor-level differences (8%). For MM-suppressed GABA data, the variance was distributed equally between site- (50%) and participant-level (50%) differences. The findings show that GABA+ measurements exhibit strong agreement when implemented with a standard protocol. There is, however, increased variability for MM-suppressed GABA measurements that is attributed in part to differences in site-to-site data acquisition. This study's protocol establishes a framework for future methodological standardization of GABA-edited MRS, while the results provide valuable benchmarks for the MRS community.


Assuntos
Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/normas , Ácido gama-Aminobutírico/análise , Adulto , Conjuntos de Dados como Assunto , Feminino , Humanos , Espectroscopia de Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética/métodos , Masculino , Adulto Jovem
7.
J Neurosci ; 35(35): 12273-80, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26338337

RESUMO

Neural responses in primary visual cortex (V1) depend on stimulus context in seemingly complex ways. For example, responses to an oriented stimulus can be suppressed when it is flanked by iso-oriented versus orthogonally oriented stimuli but can also be enhanced when attention is directed to iso-oriented versus orthogonal flanking stimuli. Thus the exact same contextual stimulus arrangement can have completely opposite effects on neural responses-in some cases leading to orientation-tuned suppression and in other cases leading to orientation-tuned enhancement. Here we show that stimulus-based suppression and enhancement of fMRI responses in humans depends on small changes in the focus of attention and can be explained by a model that combines feature-based attention with response normalization. SIGNIFICANCE STATEMENT: Neurons in the primary visual cortex (V1) respond to stimuli within a restricted portion of the visual field, termed their "receptive field." However, neuronal responses can also be influenced by stimuli that surround a receptive field, although the nature of these contextual interactions and underlying neural mechanisms are debated. Here we show that the response in V1 to a stimulus in the same context can either be suppressed or enhanced depending on the focus of attention. We are able to explain the results using a simple computational model that combines two well established properties of visual cortical responses: response normalization and feature-based enhancement.


Assuntos
Atenção/fisiologia , Sensibilidades de Contraste/fisiologia , Inibição Psicológica , Orientação/fisiologia , Córtex Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Modelos Teóricos , Oxigênio/sangue , Estimulação Luminosa , Tempo de Reação/fisiologia , Córtex Visual/irrigação sanguínea , Campos Visuais/fisiologia , Adulto Jovem
8.
J Vis ; 16(1): 2, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26756172

RESUMO

Surround suppression is a well-known phenomenon in which the response to a visual stimulus is diminished by the presence of neighboring stimuli. This effect is observed in neural responses in areas such as primary visual cortex, and also manifests in visual contrast perception. Studies in animal models have identified at least two separate mechanisms that may contribute to surround suppression: one that is monocular and resistant to contrast adaptation, and another that is binocular and strongly diminished by adaptation. The current study was designed to investigate whether these two mechanisms exist in humans and if they can be identified psychophysically using eye-of-origin and contrast adaptation manipulations. In addition, we examined the prediction that the monocular suppression component is broadly tuned for orientation, while suppression between eyes is narrowly tuned. Our results confirmed that when center and surrounding stimuli were presented dichoptically (in opposite eyes), suppression was orientation-tuned. Following adaptation in the surrounding region, no dichoptic suppression was observed, and monoptic suppression no longer showed orientation selectivity. These results are consistent with a model of surround suppression that depends on both low-level and higher level components. This work provides a method to assess the separate contributions of these components during spatial context processing in human vision.


Assuntos
Sensibilidades de Contraste/fisiologia , Percepção Visual/fisiologia , Adaptação Fisiológica , Adulto , Feminino , Humanos , Masculino , Orientação/fisiologia , Psicofísica , Visão Binocular/fisiologia , Córtex Visual/fisiologia
9.
Psychol Sci ; 26(2): 221-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25568064

RESUMO

Substantial evidence suggests that unconscious processing can be characterized as a lesser or weaker version of conscious processing. To test this notion, we designed a novel repeated-cuing procedure based on exogenous attention: The location of the attentional cue was first fixed across blocks (fixed-cue blocks), and then the cue was removed in subsequent blocks (no-cue blocks). The visibility of the cue was also manipulated. We found that when the cue was invisible, the response to a prespecified stimulus in the fixed-cue blocks was faster if the stimulus was at the cued location than if it was at the uncued location. But when the cue was visible, this cuing effect was abolished, potentially because of an awareness-dependent, location-based inhibition mechanism, as revealed by an attentional bias against the previously cued location in the no-cue blocks. We call this bias negative attentional aftereffect. These results provide novel evidence against the weaker-version characterization of unconscious effects, highlighting dissociable components of orienting and inhibition in exogenous cuing through awareness and temporal dynamics.


Assuntos
Conscientização/fisiologia , Estado de Consciência/fisiologia , Orientação/fisiologia , Adulto , Atenção , Sinais (Psicologia) , Feminino , Humanos , Masculino , Adulto Jovem
10.
J Vis ; 15(2): 1, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25645434

RESUMO

We measured pupil size in adult human subjects while we manipulated both the luminance of the visual scene and the location of attention. We found that, with central fixation maintained, pupillary constrictions and dilations evoked by peripheral luminance increments and decrements are larger when spatial attention is covertly (i.e., with no eye movements) directed to the stimulus region versus when it is directed to the opposite hemifield. Irrespective of the size of the attended region (focused at the center of the stimulus or spread within and outside the stimulus), the attentional enhancement is large: more than 20% of the response to stimuli in the unattended hemifield. This indicates that a sizable portion of this simple ocular behavior­often considered a subcortical "reflex"­in fact depends on cortical processing. Together, these features indicate that pupillometry is not only an index of retinal and brainstem function, but also an objective measure of complex constructs such as attention and its effects on sensory processing.


Assuntos
Atenção/fisiologia , Pupila/efeitos da radiação , Reflexo Pupilar/fisiologia , Percepção Espacial/fisiologia , Feminino , Humanos , Luz , Masculino , Estimulação Luminosa , Adulto Jovem
11.
J Vis ; 15(1): 15.1.29, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25630380

RESUMO

Stimuli appearing in the surround of the classical receptive field (CRF) can reduce neuronal firing and perceived contrast of a preferred stimulus in the CRF, a phenomenon referred to as surround suppression. Suppression is greatest when the surrounding stimulus has the same orientation and spatial frequency (SF) as the central target. Although spatial attention has been shown to influence surround suppression, the effects of feature-based attention have yet to be characterized. Using behavioral contrast adaptation in humans, we examined center-surround interactions between SF and orientation, and asked whether attending to one feature dimension versus the other influenced suppression. A center-surround triplet comprised of a central target Gabor and two flanking Gabors were used for adaptation. The flankers could have the same SF and orientation as the target, or differ in one or both of the feature dimensions. Contrast thresholds were measured for the target before and after adapting to center-surround triplets, and postadaptation thresholds were taken as an indirect measure of surround suppression. Both feature dimensions contributed to surround suppression and did not summate. Moreover, when center and surround had the same feature value in one dimension (e.g., same orientation) but had different values in the other dimension (e.g., different SF), there was more suppression when attention was directed to the feature dimension that matched between center and surround than when attention was directed to the feature dimension that differed. These results demonstrate that feature-based attention can influence center-surround interactions by enhancing the effects of the attended dimension.


Assuntos
Adaptação Ocular/fisiologia , Atenção , Sensibilidades de Contraste/fisiologia , Orientação/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa , Limiar Sensorial/fisiologia , Córtex Visual/fisiologia
12.
J Neurosci ; 33(5): 2199-204, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23365255

RESUMO

One longstanding question is how early in the visual system attention exerts its influence. Here we show that an effect of attention can be measured at the earliest possible stage of visual information processing, as a change in the optics of the eye. We tested human subjects and found that covertly attending to bright surfaces results in an enhanced pupillary light reflex (PLR)-the pupillary constriction that occurs in response to light increments. The PLR optimizes the optical quality of the retinal image across illumination conditions, increasing sensitivity by modulating retinal illumination, and improving acuity by reducing spherical aberrations. The attentional modulation of the PLR that we describe constitutes a new mechanism through which vision is affected by attention; we discuss three alternatives for the neural substrates of this effect, including the possibility that attention might act indirectly, via its well established effects in early visual cortex.


Assuntos
Atenção/fisiologia , Pupila/fisiologia , Reflexo Pupilar/fisiologia , Visão Ocular/fisiologia , Adulto , Feminino , Humanos , Luz , Masculino , Estimulação Luminosa
13.
J Neurophysiol ; 111(9): 1783-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24523525

RESUMO

Neural responses in early visual cortex depend on stimulus context. One of the most well-established context-dependent effects is orientation-specific surround suppression: the neural response to a stimulus inside the receptive field of a neuron ("target") is suppressed when it is surrounded by iso-oriented compared with orthogonal stimuli ("flankers"). Despite the importance of orientation-specific surround suppression in potentially mediating a number of important perceptual effects, including saliency, contour integration, and orientation discrimination, the underlying neural mechanisms remain unknown. The suppressive signal could be inherited from precortical areas as early as the retina and thalamus, arise from local circuits through horizontal connections, or be fed back from higher visual cortex. Here, we show, using two different methodologies, measurements of scalp-recorded event-related potentials (ERPs) and behavioral contrast adaptation aftereffects in humans, that orientation-specific surround suppression is dependent on the surface structure in an image. When the target and flankers can be grouped on the same surface (independent of their distance), orientation-specific surround suppression occurs. When the target and flankers are on different surfaces (independent of their distance), orientation-specific surround suppression does not occur. Our results demonstrate a surprising role of high-level, global processes such as grouping in determining when contextual effects occur in early visual cortex.


Assuntos
Potenciais Evocados Visuais , Percepção Espacial , Córtex Visual/fisiologia , Humanos , Retina/fisiologia , Tálamo/fisiologia
14.
J Neurophysiol ; 112(12): 3046-52, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25231615

RESUMO

We measured pupil size in adult human subjects while they selectively attended to one of two surfaces, bright and dark, defined by coherently moving dots. The two surfaces were presented at the same location; therefore, subjects could select the cued surface only on the basis of its features. With no luminance change in the stimulus, we find that pupil size was smaller when the bright surface was attended and larger when the dark surface was attended: an effect of feature-based (or surface-based) attention. With the same surfaces at nonoverlapping locations, we find a similar effect of spatial attention. The pupil size modulation cannot be accounted for by differences in eye position and by other variables known to affect pupil size such as task difficulty, accommodation, or the mere anticipation (imagery) of bright/dark stimuli. We conclude that pupil size reflects not just luminance or cognitive state, but the interaction between the two: it reflects which luminance level in the visual scene is relevant for the task at hand.


Assuntos
Atenção/fisiologia , Pupila/fisiologia , Percepção Visual/fisiologia , Adulto , Movimentos Oculares , Feminino , Humanos , Masculino , Percepção de Movimento/fisiologia , Estimulação Luminosa , Adulto Jovem
15.
J Vis ; 14(1)2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474824

RESUMO

A foundational issue in the study of unconscious processing concerns whether the stimuli of interest are truly out of awareness. Objective methods employing forced choice are typically championed as the gold standard and widely thought to be conservative. Here, however, as a case study, we demonstrate an underestimation of awareness in a collection of studies on unconscious cognitive control. Specifically, we found that (a) in addition to genuine unawareness, chance performance could be due to a failure to perform the task; (b) visual awareness for low-visibility trials was elevated when mixed with high-visibility trials compared with when presented alone as demonstrated in both objective awareness (forced-choice performance) and subjective awareness (rating based on a perceptual awareness scale); and (c) the elevation effect was partly due to a shape-specific template enhancement at both the block and intertrial levels. We term the awareness elevation effect priming of awareness: Visual priming fundamentally alters awareness, boosting otherwise invisible objects into consciousness. These results implicate two key requirements for measuring awareness: (a) verify that participants are truly performing the awareness task and (b) use all types of trials in the awareness test as in the main experiment. Priming of awareness is consistent with an expanded model of awareness and top-down attention in which awareness is determined by (a) retinal stimulus strength and (b) both goal-dependent and goal-independent extra-retinal modulation.


Assuntos
Conscientização/fisiologia , Priming de Repetição/fisiologia , Percepção Visual/fisiologia , Atenção , Comportamento , Feminino , Humanos , Masculino , Estimulação Luminosa , Adulto Jovem
16.
J Neurophysiol ; 109(10): 2606-17, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23427301

RESUMO

Multiple visual tasks can be performed on the same visual input, with different tasks presumably engaging different neuronal populations. The modular layout of the visual system implies that specific cortical regions carry more information about certain stimulus attributes than others. Thus it is reasonable to assume that decisions during a task will be optimal if they are based on the responses of the most informative neuronal signals, which presumably originate in regions with the sharpest tuning for the relevant stimulus feature. Previous studies have supported this position. Here we present the results of two fMRI experiments that confirm these findings and expand on earlier investigations by addressing the effects of the physical properties of an attended stimulus on task-related modulations in human visual cortex. Specifically, we ask whether performing two-alternative forced choice speed- and color-discrimination tasks (and other attentional processes) can modulate neural activity independent of visual stimulation and whether the effect of spatial attention depends on which task is being performed. The results indicate that 1) when stimulation and spatial attention are constant, responses in V4 and MT+ depend on the task being performed and are independent of the tested physical properties of the selected stimulus, 2) this task-dependent modulation might require a stimulus--task-specific preparatory mechanisms alone are not sufficient to drive responses, and 3) independent of which task is being performed, spatial attention adds a baseline shift to responses in MT+ and V4 when a stimulus is present.


Assuntos
Atenção , Córtex Visual/fisiologia , Adulto , Percepção de Cores , Discriminação Psicológica , Feminino , Humanos , Masculino , Estimulação Luminosa
17.
PLoS Biol ; 8(3): e1000337, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20305721

RESUMO

The ability to remember a briefly presented scene depends on a number of factors, such as its saliency, novelty, degree of threat, or behavioral relevance to a task. Here, however, we show that the encoding of a scene into memory may depend not only on what the scene contains but also when it occurs. Participants performed an attentionally demanding target detection task at fixation while also viewing a rapid sequence of full-field photographs of urban and natural scenes. Participants were then tested on whether they recognized a specific scene from the previous sequence. We found that scenes were recognized reliably only when presented concurrently with a target at fixation. This is evidence of a mechanism where traces of a visual scene are automatically encoded into memory at behaviorally relevant points in time regardless of the spatial focus of attention.


Assuntos
Comportamento/fisiologia , Memória/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Visual/fisiologia , Feminino , Humanos , Masculino , Testes Neuropsicológicos , Reconhecimento Visual de Modelos
18.
J Vis ; 13(11)2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24055791

RESUMO

Perception and performance is affected not just by what we see but also by what we do not see-inputs that escape our awareness. While conscious processing and unconscious processing have been assumed to be separate and independent, here we report the propagation of unconscious exogenous cueing as determined by conscious motion perception. In a paradigm combining masked exogenous cueing and apparent motion, we show that, when an onset cue was rendered invisible, the unconscious exogenous cueing effect traveled, manifesting at uncued locations (4° apart) in accordance with conscious perception of visual motion; the effect diminished when the cue-to-target distance was 8° apart. In contrast, conscious exogenous cueing manifested in both distances. Further evidence reveals that the unconscious and conscious nonretinotopic effects could not be explained by an attentional gradient, nor by bottom-up, energy-based motion mechanisms, but rather they were subserved by top-down, tracking-based motion mechanisms. We thus term these effects mobile cueing. Taken together, unconscious mobile cueing effects (a) demonstrate a previously unknown degree of flexibility of unconscious exogenous attention; (b) embody a simultaneous dissociation and association of attention and consciousness, in which exogenous attention can occur without cue awareness ("dissociation"), yet at the same time its effect is contingent on conscious motion tracking ("association"); and (c) underscore the interaction of conscious and unconscious processing, providing evidence for an unconscious effect that is not automatic but controlled.


Assuntos
Sinais (Psicologia) , Fixação Ocular/fisiologia , Percepção de Forma/fisiologia , Percepção de Movimento/fisiologia , Conscientização , Humanos , Iluminação , Tempo de Reação , Adulto Jovem
19.
J Vis ; 13(6)2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23685391

RESUMO

The pupil constricts in response to light increments and dilates with light decrements. Here we show that a picture of the sun, introducing a small overall decrease in light level across the field of view, results in a pupillary constriction. Thus, the pictorial representation of a high-luminance object (the sun) can override the normal pupillary dilation elicited by a light decrement. In a series of experiments that control for a variety of factors known to modulate pupil size, we show that the effect (a) does not depend on the retinal position of the images and (b) is modulated by attention. It has long been known that cognitive factors can affect pupil diameter by producing pupillary dilations. Our results indicate that high-level visual analysis (beyond the simple subcortical system mediating the pupillary response to light) can also induce pupillary constriction, with an effect size of about 0.1 mm.


Assuntos
Reflexo Pupilar/fisiologia , Sistema Solar , Visão Ocular/fisiologia , Adulto , Análise de Variância , Atenção/fisiologia , Feminino , Humanos , Iluminação , Masculino , Estimulação Luminosa/métodos , Fotografação
20.
bioRxiv ; 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37398212

RESUMO

Understanding the relationship between cortical structure and function is essential for elucidating the neural basis of human behavior. However, the impact of cortical structural features on the computational properties of neural circuits remains poorly understood. In this study, we demonstrate that a simple structural feature - cortical surface area (SA) - relates to specific computational properties underlying human visual perception. By combining psychophysical, neuroimaging, and computational modeling approaches, we show that differences in SA in the parietal and frontal cortices are associated with distinct patterns of behavior in a motion perception task. These behavioral differences can be accounted for by specific parameters of a divisive normalization model, suggesting that SA in these regions contributes uniquely to the spatial organization of cortical circuitry. Our findings provide novel evidence linking cortical structure to distinct computational properties and offer a framework for understanding how cortical architecture can impact human behavior.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA