Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 327(5): G685-G696, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39224072

RESUMO

Congenital heart disease (CHD) is the most common birth defect, occurring in roughly 40,000 U.S. births annually. Malnutrition and feeding intolerance (FI) in CHD range from 30% to 42% and are associated with longer hospitalization and increased mortality. Cardiopulmonary bypass (CPB) required for surgical repair of CHD induces a systemic inflammatory response worsening intestinal dysbiosis and leading to intestinal epithelial barrier dysfunction (EBD), possibly contributing to postoperative FI. The objective of this study was to determine the relationship of postoperative FI with intestinal microbiome, short-chain fatty acids (SCFAs), and EBD in pediatric CHD after cardiac surgery. This was a prospective study of patients aged 0-15 years undergoing cardiac surgery with CPB. Samples were collected preoperatively and postoperatively to evaluate the gut microbiome, plasma EBD markers, short-chain fatty acids (SCFAs), and plasma cytokines. Clinical data were collected to calculate a FI score and evaluate patient status postoperatively. We enrolled 26 CPB patients and identified FI (n = 13). Patients with FI had unique microbial shifts with the reduced SCFA-producing organisms Rothia, Clostridium innocuum, and Intestinimonas. Patients who developed FI had associated elevations in the plasma EBD markers claudin-2 (P < 0.05), claudin-3 (P < 0.01), and fatty acid binding protein (P < 0.01). Patients with FI had reduced plasma and stool SCFAs. Mediation analysis showed the microbiome functional shift was associated with reductions in stool butyric and propionic acid in patients with FI. In conclusion, we provide novel evidence that intestinal dysbiosis, markers of EBD, and SCFA depletion are associated with FI. These data will help identify mechanisms and therapeutics to improve clinical outcomes following pediatric cardiac surgery.NEW & NOTEWORTHY Feeding intolerance contributes to postoperative morbidity following pediatric cardiac surgery. The intestinal microbiome and milieu play a vital role in gut function. Short-chain fatty acids are gut and cardioprotective metabolites produced by commensal bacteria and help maintain appropriate barrier function. Depletion of these metabolites and barrier dysfunction contribute to postoperative feeding intolerance following cardiac surgery. Identifying mechanistic targets to improve the intestinal milieu with the goal of improved nutrition and clinical outcomes is critical.


Assuntos
Disbiose , Ácidos Graxos Voláteis , Microbioma Gastrointestinal , Cardiopatias Congênitas , Humanos , Lactente , Masculino , Feminino , Pré-Escolar , Ácidos Graxos Voláteis/metabolismo , Criança , Cardiopatias Congênitas/cirurgia , Estudos Prospectivos , Adolescente , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Intolerância Alimentar , Recém-Nascido , Mucosa Intestinal/metabolismo , Complicações Pós-Operatórias , Ponte Cardiopulmonar/efeitos adversos
2.
Drug Dev Res ; 85(1): e22129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37961833

RESUMO

Osteosarcoma (OS) is a primary malignant bone tumor characterized by frequent metastasis, rapid disease progression, and a high rate of mortality. Treatment options for OS have remained largely unchanged for decades, consisting primarily of cytotoxic chemotherapy and surgery, thus necessitating the urgent need for novel therapies. Tropolones are naturally occurring seven-membered non-benzenoid aromatic compounds that possess antiproliferative effects in a wide array of cancer cell types. MO-OH-Nap is an α-substituted tropolone that has activity as an iron chelator. Here, we demonstrate that MO-OH-Nap activates all three arms of the unfolded protein response (UPR) pathway and induces apoptosis in a panel of human OS cell lines. Co-incubation with ferric chloride or ammonium ferrous sulfate completely prevents the induction of apoptotic and UPR markers in MO-OH-Nap-treated OS cells. MO-OH-Nap upregulates transferrin receptor 1 (TFR1) protein levels, as well as TFR1, divalent metal transporter 1 (DMT1), iron-regulatory proteins (IRP1, IRP2), ferroportin (FPN), and zinc transporter 14 (ZIP14) transcript levels, demonstrating the impact of MO-OH-Nap on iron-homeostasis pathways in OS cells. Furthermore, MO-OH-Nap treatment restricts the migration and invasion of OS cells in vitro. Lastly, metabolomic profiling of MO-OH-Nap-treated OS cells revealed distinct changes in purine and pyrimidine metabolism. Collectively, we demonstrate that MO-OH-Nap-induced cytotoxic effects in OS cells are dependent on the tropolone's ability to alter cellular iron availability and that this agent exploits key metabolic pathways. These studies support further evaluation of MO-OH-Nap as a novel treatment for OS.


Assuntos
Osteossarcoma , Tropolona , Humanos , Tropolona/farmacologia , Ferro/metabolismo , Ferro/farmacologia , Apoptose , Linhagem Celular , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral
3.
Molecules ; 29(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39339419

RESUMO

A rapid, selective, and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of MO-OH-Nap tropolone (MO-OH-Nap) in mouse plasma. MO-OH-Nap is an α-substituted tropolone with anti-proliferative properties in various cancer cell lines. Detection and separation of analytes was achieved on an ACE Excel C18 (1.7 µm, 100 × 2.1 mm, MAC-MOD Analytical, Chadds Ford, PA, USA) column with mobile phase consisting of 0.05% trifluoroacetic acid in water (mobile phase A) and 0.05% trifluoroacetic acid in acetonitrile (mobile phase B), with an isocratic elution of 15:85% (A:B) at a total flow rate of 0.25 mL/min. The LC-MS/MS system was operated at unit resolution in multiple reaction monitoring (MRM) mode, using precursor ion > product ion combination of 249.10 > 202.15 m/z for MO-OH-Nap and 305.10 > 215.05 m/z for the internal standard (IS), BA-SM-OM. The MS/MS response was linear over a concentration range of 1 to 500 ng/mL with a correlation coefficient (r2) of ≥0.987. The within- and between-batch precision (%RSD) and accuracy (%Bias) were within acceptable limits. The validated method was successfully applied to determine MO-OH-Nap metabolic stability, plasma protein binding, and bio-distribution studies of MO-OH-Nap in CD-1 mice.


Assuntos
Espectrometria de Massas em Tandem , Tropolona , Animais , Espectrometria de Massas em Tandem/métodos , Camundongos , Cromatografia Líquida/métodos , Tropolona/análogos & derivados , Tropolona/farmacocinética , Tropolona/sangue , Tropolona/química , Reprodutibilidade dos Testes , Espectrometria de Massa com Cromatografia Líquida
4.
Antimicrob Agents Chemother ; 67(4): e0167922, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36943064

RESUMO

Acne vulgaris is a complex skin disease involving infection by Cutibacterium acnes, inflammation, and hyperkeratinization. We evaluated the activity of the retinoid 6-[3-(adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) and 16 other retinoid analogs as potential anti-C. acnes compounds and found that CD437 displayed the highest antimicrobial activity with an MIC against C. acnes (ATCC 6919 and HM-513) of 1 µg/mL. CD437 demonstrated an MBC of 2 µg/mL compared to up to 64 µg/mL for the retinoid adapalene and up to 16 µg/mL for tetracycline, which are commonly used clinically to treat acne. Membrane permeability assays demonstrated that exposure of C. acnes ATCC 6919 to CD437 damaged the integrity of C. acnes ATCC 6919 bacterial membranes, and this finding was confirmed with scanning electron microscopy. Additionally, CD437 downregulated the expression of C. acnes ATCC 6919 virulence factors, including the genes encoding Christie-Atkins-Munch-Petersen factor 1 (CAMP1), CAMP2, glycerol-ester hydrolase B (GehB), sialidase B, and neuraminidase. In a mouse skin infection model of C. acnes ATCC 6919, topical treatment with CD437 ameliorated skin lesions and reduced the bacterial burden in situ (P < 0.001). In human NHEK primary cells, CD437 reduced the transcriptional levels of the coding genes for inflammatory cytokines (interleukin-1α, ~10-fold; interleukin-6, ~20-fold; interleukin-8, ~30-fold; and tumor necrosis factor-alpha, ~6-fold) and downregulated the transcriptional levels of KRT10 (~10-fold), FLG (~4-fold), and TGM1 (~2-fold), indicating that CD437 can diminish inflammation and hyperkeratinization. In summary, CD437 deserves further attention for its dual function as a potential acne therapeutic that potentially acts on both the pathogen and the host.


Assuntos
Acne Vulgar , Retinoides , Camundongos , Animais , Humanos , Retinoides/metabolismo , Retinoides/uso terapêutico , Acne Vulgar/tratamento farmacológico , Acne Vulgar/microbiologia , Citocinas/metabolismo , Antibacterianos/uso terapêutico , Inflamação , Propionibacterium acnes
5.
Psychol Med ; 53(5): 1947-1954, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310328

RESUMO

BACKGROUND: Prior work supports delayed gastric emptying in anorexia nervosa and bulimia nervosa (BN) but not binge-eating disorder, suggesting that neither low body weight nor binge eating fully accounts for slowed gastric motility. Specifying a link between delayed gastric emptying and self-induced vomiting could offer new insights into the pathophysiology of purging disorder (PD). METHODS: Women (N = 95) recruited from the community meeting criteria for DSM-5 BN who purged (n = 26), BN with nonpurging compensatory behaviors (n = 18), PD (n = 25), or healthy control women (n = 26) completed assessments of gastric emptying, gut peptides, and subjective responses over the course of a standardized test meal under two conditions administered in a double-blind, crossover sequence: placebo and 10 mg of metoclopramide. RESULTS: Delayed gastric emptying was associated with purging with no main or moderating effects of binge eating in the placebo condition. Medication eliminated group differences in gastric emptying but did not alter group differences in reported gastrointestinal distress. Exploratory analyses revealed that medication caused increased postprandial PYY release, which predicted elevated gastrointestinal distress. CONCLUSIONS: Delayed gastric emptying demonstrates a specific association with purging behaviors. However, correcting disruptions in gastric emptying may exacerbate disruptions in gut peptide responses specifically linked to the presence of purging after normal amounts of food.


Assuntos
Transtorno da Compulsão Alimentar , Bulimia , Transtornos da Alimentação e da Ingestão de Alimentos , Gastroparesia , Feminino , Humanos , Esvaziamento Gástrico , Estudos de Casos e Controles
6.
Pharm Res ; 40(1): 107-122, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36271204

RESUMO

Nucleic acid (NA) therapy has gained importance over the past decade due to its high degree of selectivity and minimal toxic effects over conventional drugs. Currently, intravenous (IV) or intramuscular (IM) formulations constitute majority of the marketed formulations containing nucleic acids. However, oral administration is traditionally preferred due to ease of administration as well as higher patient compliance. To leverage the benefits of oral delivery for NA therapy, the NA of interest must be delivered to the target site avoiding all degrading and inhibiting factors during its transition through the gastrointestinal tract. The oral route presents myriad of challenges to NA delivery, making formulation development challenging. Researchers in the last few decades have formulated various delivery systems to overcome such challenges and several reviews summarize and discuss these strategies in detail. However, there is a need to differentiate between the approaches based on target so that in future, delivery strategies can be developed according to the goal of the study and for efficient delivery to the desired site. The goal of this review is to summarize the mechanisms for target specific delivery, list and discuss the formulation strategies used for oral delivery of NA therapies and delineate the similarities and differences between local and systemic targeting oral delivery systems and current challenges.


Assuntos
Sistemas de Liberação de Medicamentos , Ácidos Nucleicos , Humanos , Administração Oral , Trato Gastrointestinal
7.
Proc Natl Acad Sci U S A ; 117(32): 19446-19454, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32723829

RESUMO

Antimicrobial peptides are important candidates for developing new classes of antibiotics because of their potency against antibiotic-resistant pathogens. Current research focuses on topical applications and it is unclear how to design peptides with systemic efficacy. To address this problem, we designed two potent peptides by combining database-guided discovery with structure-based design. When bound to membranes, these two short peptides with an identical amino acid composition can adopt two distinct amphipathic structures: A classic horizontal helix (horine) and a novel vertical spiral structure (verine). Their horizontal and vertical orientations on membranes were determined by solid-state 15N NMR data. While horine was potent primarily against gram-positive pathogens, verine showed broad-spectrum antimicrobial activity. Both peptides protected greater than 80% mice from infection-caused deaths. Moreover, horine and verine also displayed significant systemic efficacy in different murine models comparable to conventional antibiotics. In addition, they could eliminate resistant pathogens and preformed biofilms. Significantly, the peptides showed no nephrotoxicity to mice after intraperitoneal or intravenous administration for 1 wk. Our study underscores the significance of horine and verine in fighting drug-resistant pathogens.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/metabolismo , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Membrana Celular/metabolismo , Bases de Dados de Proteínas , Desenho de Fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Resultado do Tratamento
8.
Biomed Chromatogr ; 37(8): e5643, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37042063

RESUMO

A sensitive and selective liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for the quantitation of dual PI3K/BRD4 inhibitor SF2523 in mouse plasma. The analysis was performed on a UPLC system connected to a Shimadzu 8060 mass spectrometer by electrospray ionization in positive multiple reaction monitoring mode. Chromatographic separation was carried out on an ACE Excel C18 column with a gradient elution containing 0.1% formic acid and methanol as the mobile phase. The linearity was conducted in the concentration range 0.1-500 ng/ml for SF2523 in 100 µl of plasma. The inter- and intra-batch precision (RSD) were both lower than 13.5%, with the accuracy (percentage bias) ranging from -10.03 to 11.56%. The validated method was successfully applied to plasma protein binding and in vitro metabolism studies. SF2523 was highly bound to mouse plasma proteins (>95% bound). Utilizing mouse S9 fractions, a total of seven phase I and II metabolites were identified with hydroxylation found to be the major metabolic pathway. Metabolite identification included analysis of retention behaviors, molecular weight changes and MS/MS fragment patterns of SF2523 and the metabolites. This newly developed and validated method allows the rapid and easy determination of the SF2523 concentration with high sensitivity in a low sample volume and can be applied to future pre-clinical studies.


Assuntos
Proteínas Nucleares , Espectrometria de Massas em Tandem , Camundongos , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Fosfatidilinositol 3-Quinases , Cromatografia Líquida de Alta Pressão/métodos , Ligação Proteica , Fatores de Transcrição , Proteínas Sanguíneas , Reprodutibilidade dos Testes
9.
Drug Dev Res ; 84(1): 62-74, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36433690

RESUMO

Rab GTPases are critical regulators of protein trafficking in the cell. To ensure proper cellular localization and function, Rab proteins must undergo a posttranslational modification, termed geranylgeranylation. In the isoprenoid biosynthesis pathway, the enzyme geranylgeranyl diphosphate synthase (GGDPS) generates the 20-carbon isoprenoid donor (geranylgeranyl pyrophosphate [GGPP]), which is utilized in the prenylation of Rab proteins. We have pursued the development of GGDPS inhibitors (GGSI) as a novel means to target Rab activity in cancer cells. Osteosarcoma (OS) and Ewing sarcoma (ES) are aggressive childhood bone cancers with stagnant survival statistics and limited treatment options. Here we show that GGSI treatment induces markers of the unfolded protein response (UPR) and triggers apoptotic cell death in a variety of OS and ES cell lines. Confirmation that these effects were secondary to cellular depletion of GGPP and disruption of Rab geranylgeranylation was confirmed via experiments using exogenous GGPP or specific geranylgeranyl transferase inhibitors. Furthermore, GGSI treatment disrupts cellular migration and invasion in vitro. Metabolomic profiles of OS and ES cell lines identify distinct changes in purine metabolism in GGSI-treated cells. Lastly, we demonstrate that GGSI treatment slows tumor growth in a mouse model of ES. Collectively, these studies support further development of GGSIs as a novel treatment for OS and ES.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Sarcoma de Ewing , Animais , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Farnesiltranstransferase/metabolismo , Osteossarcoma/tratamento farmacológico , Sarcoma de Ewing/tratamento farmacológico , Terpenos
10.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982565

RESUMO

Vitamin D plays a critical role in bone development and maintenance, and in other physiological functions. The quantitation of endogenous levels of individual vitamin D and its metabolites is crucial for assessing several disease state conditions. With cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) leading to the coronavirus disease 2019 (COVID-19) pandemic, there are several studies that have associated lower levels of serum vitamin D with severity of infection in COVID-19 patients. In this context, we have developed and validated a robust LC-MS/MS method for simultaneous quantitation of vitamin D and its metabolites in human dried blood spot (DBS) obtained from participants tested for COVID-19. The chromatographic separation for vitamin D and metabolites was performed using an ACE Excel C18 PFP column protected with a C18 guard column (Phenomenex, Torrance, CA, USA). The mobile phase consisted of formic acid in water (0.1% v/v) as mobile phase A and formic acid in methanol (0.1% v/v) as mobile phase B, operated at a flow rate of 0.5 mL/min. Analysis was performed utilizing the LC-MS/MS technique. The method was sensitive with a limit of quantification of 0.78 ng/mL for all analytes, and had a large dynamic range (200 ng/mL) with a total run time of 11 min. The inter- and intraday accuracy and precision values met the acceptance criteria per the US Food and Drug Administration guidelines. Blood concentrations of 25(OH)D3, vitamin D3, 25(OH)D2, and vitamin D2 over a range of 2-195.6, 0.5-121.5, 0.6-54.9, and 0.5-23.9 ng/mL, respectively, were quantified in 909 DBS samples. In summary, our developed LC-MS/MS method may be used for quantification of vitamin D and its metabolites in DBS, and may be applied to investigations of the emerging role of these compounds in various physiological processes.


Assuntos
COVID-19 , Vitamina D , Humanos , Cromatografia Líquida/métodos , SARS-CoV-2 , Espectrometria de Massas em Tandem/métodos , Vitaminas , Biomarcadores , Reprodutibilidade dos Testes
11.
Biomed Chromatogr ; 36(10): e5443, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35789011

RESUMO

A sensitive, specific and rapid liquid chromatographic-tandem mass spectrometric (LC-MS/MS) method was developed and validated to quantify azithromycin concentrations in human plasma. Azithromycin (AZI) is the most common outpatient prescribed antibiotic in the US and clinical studies have demonstrated the efficacy and safety of AZI in many bacterial infections. To support a clinical study, we developed a high-throughput LC-MS/MS method to process up to 250 samples per day to quantify AZI in human plasma. Samples were prepared by solid-phase extraction. Separation was achieved with an ACE C18 column (2.1 × 100 mm, 1.7 µm) equipped with a C18 guard column. The mobile phase consisted of 0.1% formic acid and methanol-acetonitrile (1:1, v/v) at a flow rate of 0.25 ml/min. The ionization was optimized with positive electrospray source using multiple reaction monitoring transition, m/z 749.50 > 591.45 for AZI and m/z 754.50 > 596.45 for AZI-d5. Extraction recoveries were approximately 90% for AZI. The assay was linear from 0.5 to 2,000 ng/ml and required only 100 µl of plasma with a total analysis time of 4.5 min. The method was successfully applied to pharmacokinetic studies of a weight-based dosing protocol for AZI.


Assuntos
Azitromicina , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Humanos , Reprodutibilidade dos Testes , Extração em Fase Sólida , Espectrometria de Massas em Tandem/métodos
12.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362272

RESUMO

Fatty acids are widespread naturally occurring compounds, and essential constituents for living organisms. Short chain fatty acids (SCFAs) appeared as physiologically relevant metabolites for their involvement with gut microbiota, immunology, obesity, and other pathophysiological functions. This has raised the demand for reliable analytical detection methods in a variety of biological matrices. Here, we describe an updated overview of sample pretreatment techniques and liquid chromatography-mass spectrometry (LC-MS)-based methods for quantitative analysis of SCFAs in blood, plasma, serum, urine, feces and bacterial cultures. The present review incorporates various procedures and their applications to help researchers in choosing crucial parameters, such as pretreatment for complex biological matrices, and variables for chromatographic separation and detection, to establish a simple, sensitive, and robust quantitative method to advance our understanding of the role of SCFAs in human health and disease as potential biomarkers.


Assuntos
Ácidos Graxos Voláteis , Espectrometria de Massas em Tandem , Humanos , Ácidos Graxos Voláteis/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Fezes/química , Biomarcadores/análise
13.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162945

RESUMO

Pneumococcal pneumonia is a leading cause of morbidity and mortality worldwide. An increased susceptibility is due, in part, to compromised immune function. Zinc is required for proper immune function, and an insufficient dietary intake increases the risk of pneumonia. Our group was the first to reveal that the Zn transporter, ZIP8, is required for host defense. Furthermore, the gut microbiota that is essential for lung immunity is adversely impacted by a commonly occurring defective ZIP8 allele in humans. Taken together, we hypothesized that loss of the ZIP8 function would lead to intestinal dysbiosis and impaired host defense against pneumonia. To test this, we utilized a novel myeloid-specific Zip8KO mouse model in our studies. The comparison of the cecal microbial composition of wild-type and Zip8KO mice revealed significant differences in microbial community structure. Most strikingly, upon a S. pneumoniae lung infection, mice recolonized with Zip8KO-derived microbiota exhibited an increase in weight loss, bacterial dissemination, and lung inflammation compared to mice recolonized with WT microbiota. For the first time, we reveal the critical role of myeloid-specific ZIP8 on the maintenance of the gut microbiome structure, and that loss of ZIP8 leads to intestinal dysbiosis and impaired host defense in the lung. Given the high incidence of dietary Zn deficiency and the ZIP8 variant allele in the human population, additional investigation is warranted to improve surveillance and treatment strategies.


Assuntos
Bactérias/classificação , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Disbiose/metabolismo , Pulmão/microbiologia , Pneumonia Pneumocócica/metabolismo , Streptococcus pneumoniae/patogenicidade , Animais , Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Modelos Animais de Doenças , Disbiose/genética , Feminino , Microbioma Gastrointestinal , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Pulmão/metabolismo , Camundongos , Pneumonia Pneumocócica/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Zinco/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-33526484

RESUMO

Oxfendazole is a potent veterinary benzimidazole anthelmintic under transition to humans for the treatment of multiple parasitic infectious diseases. The first-in-human study evaluating the disposition of oxfendazole and its metabolites in healthy adults following single ascending oral doses from 0.5 to 60 mg/kg of body weight shows that oxfendazole pharmacokinetics is substantially nonlinear, which complicates correlating oxfendazole dose to exposure. To quantitatively capture the relation between oxfendazole dose and exposure, a population pharmacokinetic model for oxfendazole and its metabolites, oxfendazole sulfone and fenbendazole, in humans was developed using a nonlinear mixed-effect modeling approach. Our final model incorporated mechanistic characterization of dose-limited bioavailability as well as different oxfendazole metabolic processes and provided insight into the significance of presystemic metabolism in oxfendazole and metabolite disposition. Oxfendazole clinical pharmacokinetics was best described by a one-compartment model with nonlinear absorption and linear elimination. Oxfendazole apparent clearance and apparent volume of distribution were estimated to be 2.57 liters/h and 35.2 liters, respectively, at the lowest dose (0.5 mg/kg), indicating that oxfendazole is a low extraction drug with moderate distribution. The disposition of both metabolites was adequately characterized by a one-compartment model with formation rate-limited elimination. Fenbendazole formation from oxfendazole was primarily through systemic metabolism, while both presystemic and systemic metabolism were critical to the formation of oxfendazole sulfone. Our model adequately captured the concentration-time profiles of both oxfendazole and its two metabolites in healthy adults over a wide dose range. The model can be used to predict oxfendazole disposition under new dosing regimens to support dose optimization in humans.


Assuntos
Anti-Helmínticos , Benzimidazóis , Administração Oral , Adulto , Fenbendazol , Humanos , Taxa de Depuração Metabólica
15.
Antimicrob Agents Chemother ; 65(10): e0031721, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34310218

RESUMO

Diethylcarbamazine (DEC) is a drug of choice to treat lymphatic filariasis (LF) either used alone or in combination as mass drug administration (MDA) preventive strategies. The objective of this study was to develop a population pharmacokinetics (PK) model for DEC in subjects infected with lymphatic filariasis (LF) compared to healthy individuals, and to evaluate the effect of covariates on the volume of distribution (V/F) and oral clearance (CL/F) of DEC. This was an open-label cohort study of treatment-naive Wuchereria bancrofti-infected (n = 32) and uninfected (n = 24) adults residing in the Agboville District of Côte d'Ivoire. The population pharmacokinetics model for DEC was built using Phoenix NLME 8.0 software. The covariates included in the model-building process were age, gender, body weight, infection status, creatinine clearance (CLCR), and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. A total of 56 adults were enrolled in the study, and a total of 728 samples were obtained over 168 h. A one-compartment linear pharmacokinetics model with first-order absorption with an absorption lag time (Tlag) best described the data. After determining the pharmacokinetics (PK) parameters of DEC, body weight and gender were found to be the significant covariates for DEC V/F. The final population pharmacokinetics model adequately described the pharmacokinetics of DEC in the studied population. Model-based simulation indicated that the body weight significantly impacted the exposure in both the male and female populations. This analysis may further support the drug-drug interaction model development of DEC with different coadministered drugs or agents in disease control programs. (This study is registered at clinicaltrials.gov under identifier NCT02845713.).


Assuntos
Filariose Linfática , Filaricidas , Adulto , Animais , Estudos de Coortes , Dietilcarbamazina/uso terapêutico , Filariose Linfática/tratamento farmacológico , Feminino , Filaricidas/uso terapêutico , Humanos , Masculino , Wuchereria bancrofti
16.
Pharmacol Res ; 167: 105528, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667685

RESUMO

Geranylgeranyl diphosphate synthase (GGDPS), an enzyme in the isoprenoid biosynthetic pathway (IBP), produces the isoprenoid (geranylgeranyl pyrophosphate, GGPP) used in protein geranylgeranylation reactions. Our prior studies utilizing triazole bisphosphonate-based GGDPS inhibitors (GGSIs) have revealed that these agents represent a novel strategy by which to induce cancer cell death, including multiple myeloma and pancreatic cancer. Statins inhibit the rate-limiting enzyme in the IBP and potentiate the effects of GGSIs in vitro. The in vivo effects of combination therapy with statins and GGSIs have not been determined. Here we evaluated the effects of combining VSW1198, a novel GGSI, with a statin (lovastatin or pravastatin) in CD-1 mice. Twice-weekly dosing with VSW1198 at the previously established maximally tolerated dose in combination with a statin led to hepatotoxicity, while once-weekly VSW1198-based combinations were feasible. No abnormalities in kidney, spleen, brain or skeletal muscle were observed with combination therapy. Combination therapy disrupted protein geranylgeranylation in vivo. Evaluation of hepatic isoprenoid levels revealed decreased GGPP levels in the single drug groups and undetectable GGPP levels in the combination groups. Additional studies with combinations using 50% dose-reductions of either VSW1198 or lovastatin revealed minimal hepatotoxicity with expected on-target effects of diminished GGPP levels and disruption of protein geranylgeranylation. Combination statin/GGSI therapy significantly slowed tumor growth in a myeloma xenograft model. Collectively, these studies are the first to demonstrate that combination IBP inhibitor therapy alters isoprenoid levels and disrupts protein geranylgeranylation in vivo as well as slows tumor growth in a myeloma xenograft model, thus providing the framework for future clinical exploration.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Diterpenos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Prenilação de Proteína/efeitos dos fármacos , Terpenos/metabolismo , Triazóis/administração & dosagem , Animais , Vias Biossintéticas/fisiologia , Linhagem Celular Tumoral , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Diterpenos/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Quimioterapia Combinada , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/toxicidade , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/metabolismo , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/toxicidade , Lovastatina/administração & dosagem , Lovastatina/toxicidade , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pravastatina/administração & dosagem , Pravastatina/toxicidade , Prenilação de Proteína/fisiologia , Terpenos/antagonistas & inibidores , Triazóis/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Clin Infect Dis ; 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32818264

RESUMO

BACKGROUND: Pharmacokinetic data are a pre-requisite to integrated implementation of large-scale mass drug administration (MDA) for neglected tropical diseases (NTDs). We investigated the safety and drug interactions of a combination of azithromycin (AZI) targeting yaws and trachoma, with the newly approved ivermectin, albendazole, diethylcarbamazine (IDA) regime for Lymphatic Filariasis. METHODOLOGY: An open-label, randomized, 3-arm pharmacokinetic interaction study in adult volunteers was carried out in Lihir Island, Papua New Guinea. Healthy adult participants were recruited and randomized to (I) IDA alone, (II) IDA combined with AZI, (III) AZI alone. The primary outcome was lack of a clinically relevant drug interaction. The secondary outcome was the overall difference in the proportion of AEs between treatment arms. RESULTS: Thirty-seven participants, eighteen men and nineteen women, were randomized and completed the study. There were no significant drug-drug interactions between the study arms. The GMR of Cmax, AUC0-t, and AUC0-∞ for IVM, DEC, ALB-SOX, and AZI were within the range of 80-125% (GMR for AUC0-∞ for IVM, 87.9; DEC, 92.9; ALB-SOX, 100.0; and AZI, 100.1). There was no significant difference in the frequency of AEs across study arms (AZI and IDA alone arms 9/12 (75%), co-administration arm 12/13 (92%); p = 0.44). All AEs were grade 1 and self-limiting. CONCLUSIONS: Co-administration of AZI with IDA did not show evidence of significant drug-interactions. There were no serious AEs in any of the study arms. Our data support further evaluation of the safety of integrated MDA for NTDs.Clinical Trials Registration. NCT03664063.

18.
Biomed Chromatogr ; 34(8): e4859, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32307720

RESUMO

A rapid, selective, and sensitive liquid chromatography coupled with tandem mass spectrometry (MS/MS) method was developed and validated for the quantitation of the novel CDK5 inhibitor '20-223' in mouse plasma. Separation of analytes was achieved by a reverse-phase ACE Excel C18 column (1.7 µm, 100 × 2.1 mm) with gradient elution using 0.1% formic acid (FA) in methanol and 0.1% FA as the mobile phase. Analytes were monitored by MS/MS with an electrospray ionization source in the positive multiple reaction monitoring mode. The MS/MS response was linear over the concentration range 0.2-500 ng/mL for 20-223. The within- and between-batch precision were within the acceptable limits as per Food and Drug Administration guidelines. The validated method was successfully applied to plasma protein binding and in vitro metabolism studies. Compound 20-223 was highly bound to mouse plasma proteins (>98% bound). Utilizing mouse S9 fractions, in vitro intrinsic clearance (CLint ) was 24.68 ± 0.99 µL/min/mg protein. A total of 12 phase I and II metabolites were identified with hydroxylation found to be the major metabolic pathway. The validate method required a low sample volume, was linear from 0.2 to 500 ng/mL, and had acceptable accuracy and precision.


Assuntos
Cromatografia Líquida/métodos , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Proteínas Sanguíneas/metabolismo , Limite de Detecção , Modelos Lineares , Camundongos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Reprodutibilidade dos Testes
19.
Molecules ; 25(2)2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936209

RESUMO

Baclofen is a racemic mixture that is commonly used for the treatment for spasticity. However, the optimal dose and dosing interval to achieve effective cerebral spinal fluid (CSF) concentrations of baclofen are not known. Moreover, it is unclear if there are differences in the ability of R- or S-baclofen to cross the blood-brain barrier and achieve effective CSF concentrations. We have validated a liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method with improved selectivity and sensitivity for the simultaneous quantitation of R- and S-baclofen and metabolites in plasma and CSF. Protein precipitation by acetonitrile was utilized to obtain an acceptable recovery of the analytes. The detection and separation of analytes was achieved on a 48 °C-heated Crownpak CR(+) column (150 mm × 4.0 mm, 5µ) with elution using 0.4% formic acid (FA) in water and 0.4% FA in acetonitrile as the mobile phase running at a flow rate of 1.0 mL/min. Accurate quantitation was assured by using this MS/MS method with atmospheric pressure chemical ionization in multiple reaction monitoring (MRM) mode. Therefore, this method is enantioselective, accurate, precise, sensitive, reliable, and linear from 1 to 1500 ng/mL for baclofen and 2 to 4000 ng/mL for the metabolites. An additional method was developed to separate racemic baclofen 3-(4-chlorophenyl)-4 hydroxybutyric acid metabolites for individual concentration determination. Both validated methods were successfully applied to a clinical pharmacokinetic human plasma and CSF study evaluating the disposition of baclofen and metabolites.


Assuntos
Pressão Atmosférica , Baclofeno/sangue , Baclofeno/líquido cefalorraquidiano , Metaboloma , Espectrometria de Massas em Tandem , Baclofeno/química , Calibragem , Cromatografia Líquida , Monitoramento de Medicamentos , Feminino , Humanos , Masculino , Estereoisomerismo , Adulto Jovem
20.
Molecules ; 25(24)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322110

RESUMO

MP1 is a novel marinopyrrole analogue with activity in MYCN amplified neuroblastoma cell lines. A rapid, selective, and sensitive liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) method was developed and validated for quantitation of MP1 in mouse plasma. Analyte separation was achieved using a Waters Acquity UPLC®BEH C18 column (1.7 µm, 100 × 2.1 mm). Mobile phase consisted of 0.1% acetic acid in water (10%) and methanol (90%) at a total flow rate of 0.25 mL/min. The mass spectrometer was operated at unit resolution in the multiple reaction monitoring (MRM) mode, using precursor ion > product ion transitions of 324.10 > 168.30 m/z for MP1 and 411.95 > 224.15 m/z for PL-3. The MS/MS response was linear over the concentration range from 0.2-500 ng/mL for MP1, correlation coefficient (r2) of 0.988. Precision (% RSD) and accuracy (% bias) were within the acceptable limits as per FDA guidelines. MP1 was stable under storage and laboratory handling conditions. The validated method was successfully applied to assess the solubility, in-vitro metabolism, plasma protein binding, and bio-distribution studies of MP1.


Assuntos
Cromatografia Líquida , Pirróis/metabolismo , Pirróis/farmacocinética , Espectrometria de Massas em Tandem , Animais , Camundongos , Pirróis/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Solubilidade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA