Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neuroinflammation ; 20(1): 34, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782185

RESUMO

BACKGROUND: One intrastriatal administration of quinolinic acid (QA) in rats induces a lesion with features resembling those observed in Huntington's disease. Our aim is to evaluate the effects of the cysteinyl leukotriene receptor antagonist montelukast (MLK), which exhibited neuroprotection in different preclinical models of neurodegeneration, on QA-induced neuroinflammation and regional metabolic functions. METHODS: The right and left striatum of Sprague Dawley and athymic nude rats were injected with QA and vehicle (VEH), respectively. Starting from the day before QA injection, animals were treated with 1 or 10 mg/kg of MLK or VEH for 14 days. At 14 and 30 days post-lesion, animals were monitored with magnetic resonance imaging (MRI) and positron emission tomography (PET) using [18F]-VC701, a translocator protein (TSPO)-specific radiotracer. Striatal neuroinflammatory response was measured post-mortem in rats treated with 1 mg/kg of MLK by immunofluorescence. Rats treated with 10 mg/kg of MLK also underwent a [18F]-FDG PET study at baseline and 4 months after lesion. [18F]-FDG PET data were then used to assess metabolic connectivity between brain regions by applying a covariance analysis method. RESULTS: MLK treatment was not able to reduce the QA-induced increase in striatal TSPO PET signal and MRI lesion volume, where we only detected a trend towards reduction in animals treated with 10 mg/kg of MLK. Post-mortem immunofluorescence analysis revealed that MLK attenuated the increase in striatal markers of astrogliosis and activated microglia in the lesioned hemisphere. We also found a significant increase in a marker of anti-inflammatory activity (MannR) and a trend towards reduction in a marker of pro-inflammatory activity (iNOS) in the lesioned striatum of MLK-compared to VEH-treated rats. [18F]-FDG uptake was significantly reduced in the striatum and ipsilesional cortical regions of VEH-treated rats at 4 months after lesion. MLK administration preserved glucose metabolism in these cortical regions, but not in the striatum. Finally, MLK was able to counteract changes in metabolic connectivity and measures of network topology induced by QA, in both lesioned and non-lesioned hemispheres. CONCLUSIONS: Overall, MLK treatment produced a significant neuroprotective effect by reducing neuroinflammation assessed by immunofluorescence and preserving regional brain metabolism and metabolic connectivity from QA-induced neurotoxicity in cortical and subcortical regions.


Assuntos
Encefalite , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos Sprague-Dawley , Ácido Quinolínico/toxicidade , Ácido Quinolínico/metabolismo , Fluordesoxiglucose F18/metabolismo , Doenças Neuroinflamatórias , Corpo Estriado/metabolismo , Síndromes Neurotóxicas/patologia , Encefalite/patologia , Modelos Animais de Doenças
2.
Neurobiol Dis ; 162: 105579, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34871735

RESUMO

The G2019S mutation of LRRK2 represents a risk factor for idiopathic Parkinson's disease. Here, we investigate whether LRRK2 kinase activity regulates susceptibility to the environmental toxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). G2019S knock-in mice (bearing enhanced kinase activity) showed greater nigro-striatal degeneration compared to LRRK2 knock-out, LRRK2 kinase-dead and wild-type mice following subacute MPTP treatment. LRRK2 kinase inhibitors PF-06447475 and MLi-2, tested under preventive or therapeutic treatments, protected against nigral dopamine cell loss in G2019S knock-in mice. MLi-2 also rescued striatal dopaminergic terminal degeneration in both G2019S knock-in and wild-type mice. Immunoblot analysis of LRRK2 Serine935 phosphorylation levels confirmed target engagement of LRRK2 inhibitors. However, MLi-2 abolished phosphoSerine935 levels in the striatum and midbrain of both wild-type and G2019S knock-in mice whereas PF-06447475 partly reduced phosphoSerine935 levels in the midbrain of both genotypes. In vivo and ex vivo uptake of the 18-kDa translocator protein (TSPO) ligand [18F]-VC701 revealed a similar TSPO binding in MPTP-treated wild-type and G2019S knock-in mice which was consistent with an increased GFAP striatal expression as revealed by Real Time PCR. We conclude that LRRK2 G2019S, likely through enhanced kinase activity, confers greater susceptibility to mitochondrial toxin-induced parkinsonism. LRRK2 kinase inhibitors are neuroprotective in this model.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Animais , Corpo Estriado/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Camundongos , Mutação , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/metabolismo , Fosforilação
3.
Mol Psychiatry ; 26(11): 6531-6549, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34035473

RESUMO

Mutations in the RAB39B gene cause X-linked intellectual disability (XLID), comorbid with autism spectrum disorders or early Parkinson's disease. One of the functions of the neuronal small GTPase RAB39B is to drive GluA2/GluA3 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) maturation and trafficking, determining AMPAR subunit composition at glutamatergic postsynaptic neuronal terminals. Taking advantage of the Rab39b knockout murine model, we show that a lack of RAB39B affects neuronal dendritic spine refinement, prompting a more Ca2+-permeable and excitable synaptic network, which correlates with an immature spine arrangement and behavioural and cognitive alterations in adult mice. The persistence of immature circuits is triggered by increased hypermobility of the spine, which is restored by the Ca2+-permeable AMPAR antagonist NASPM. Together, these data confirm that RAB39B controls AMPAR trafficking, which in turn plays a pivotal role in neuronal dendritic spine remodelling and that targeting Ca2+-permeable AMPARs may highlight future pharmaceutical interventions for RAB39B-associated disease conditions.


Assuntos
Espinhas Dendríticas , Deficiência Intelectual , Proteínas rab de Ligação ao GTP , Animais , Cálcio , Espinhas Dendríticas/fisiologia , Camundongos , Plasticidade Neuronal , Neurônios/fisiologia , Receptores de Glutamato/fisiologia , Proteínas rab de Ligação ao GTP/fisiologia
4.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925229

RESUMO

Obesity is a chronic, complex pathology associated with a risk of developing secondary pathologies, including cardiovascular diseases, cancer, type 2 diabetes (T2DM) and musculoskeletal disorders. Since skeletal muscle accounts for more than 70% of total glucose disposal, metabolic alterations are strictly associated with the onset of insulin resistance and T2DM. The present study relies on the proteomic analysis of gastrocnemius muscle from 15 male and 15 female C56BL/J mice fed for 14 weeks with standard, 45% or 60% high-fat diets (HFD) adopting a label-free LC-MS/MS approach followed by bioinformatic pathway analysis. Results indicate changes in males due to HFD, with increased muscular stiffness (Col1a1, Col1a2, Actb), fiber-type switch from slow/oxidative to fast/glycolytic (decreased Myh7, Myl2, Myl3 and increased Myh2, Mylpf, Mybpc2, Myl1), increased oxidative stress and mitochondrial dysfunction (decreased respiratory chain complex I and V and increased complex III subunits). At variance, females show few alterations and activation of compensatory mechanisms to counteract the increase of fatty acids. Bioinformatics analysis allows identifying upstream molecules involved in regulating pathways identified at variance in our analysis (Ppargc1a, Pparg, Cpt1b, Clpp, Tp53, Kdm5a, Hif1a). These findings underline the presence of a gender-specific response to be considered when approaching obesity and related comorbidities.


Assuntos
Músculo Esquelético/metabolismo , Obesidade/metabolismo , Animais , Cromatografia Líquida/métodos , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Dieta Hiperlipídica/métodos , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiologia , Obesidade/fisiopatologia , Estresse Oxidativo , Proteômica/métodos , Sarcopenia/metabolismo , Fatores Sexuais , Espectrometria de Massas em Tandem/métodos
5.
J Neuroinflammation ; 15(1): 33, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402285

RESUMO

BACKGROUND: Positron emission tomography (PET) using translocator protein (TSPO) ligands has been used to detect neuroinflammatory processes in neurological disorders, including multiple sclerosis (MS). The aim of this study was to evaluate neuroinflammation in a mouse MS model (EAE) using TSPO-PET with 18F-VC701, in combination with magnetic resonance imaging (MRI). METHODS: MOG35-55/CFA and pertussis toxin protocol was used to induce EAE in C57BL/6 mice. Disease progression was monitored daily, whereas MRI evaluation was performed at 1, 2, and 4 weeks post-induction. Microglia activation was assessed in vivo by 18F-VC701 PET at the time of maximum disease score and validated by radioligand ex vivo distribution and immunohistochemistry at 2 and 4 weeks post-immunization. RESULTS: In vivo and ex vivo analyses show that 18F-VC701 significantly accumulates within the central nervous system (CNS), particularly in the cortex, striatum, hippocampus, cerebellum, and cervical spinal cord of EAE compared to control mice, at 2 weeks post-immunization. MRI confirmed the presence of focal brain lesions at 2 weeks post-immunization in both T1-weighted and T2 images. Of note, MRI abnormalities attenuated in later post-immunization phase. Neuropathological analysis confirmed the presence of microglial activation in EAE mice, consistent with the in vivo increase of 18F-VC701 uptake. CONCLUSION: Increase of 18F-VC701 uptake in EAE mice is strongly associated with the presence of microglia activation in the acute phase of the disease. The combined use of TSPO-PET and MRI provided complementary evidence on the ongoing disease process, thus representing an attractive new tool to investigate neuronal damage and neuroinflammation at preclinical levels.


Assuntos
Radioisótopos de Flúor/metabolismo , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Quinolinas/metabolismo , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL
6.
Front Cell Neurosci ; 17: 1125785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091923

RESUMO

Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the "omics era", successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.

7.
Commun Biol ; 5(1): 1276, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414721

RESUMO

We examined effects of exposing female and male mice for 33 weeks to 45% or 60% high fat diet (HFD). Males fed with either diet were more vulnerable than females, displaying higher and faster increase in body weight and more elevated cholesterol and liver enzymes levels. Higher glucose metabolism was revealed by PET in the olfactory bulbs of both sexes. However, males also displayed altered anterior cortex and cerebellum metabolism, accompanied by a more prominent brain inflammation relative to females. Although both sexes displayed reduced transcripts of neuronal and synaptic genes in anterior cortex, only males had decreased protein levels of AMPA and NMDA receptors. Oppositely, to anterior cortex, cerebellum of HFD-exposed mice displayed hypometabolism and transcriptional up-regulation of neuronal and synaptic genes. These results indicate that male brain is more susceptible to metabolic changes induced by HFD and that the anterior cortex versus cerebellum display inverse susceptibility to HFD.


Assuntos
Dieta Hiperlipídica , Obesidade , Animais , Camundongos , Masculino , Feminino , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Encéfalo/metabolismo , Peso Corporal , Neurônios/metabolismo
8.
Front Aging Neurosci ; 12: 152, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581765

RESUMO

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the appearance of α-synuclein insoluble aggregates known as Lewy bodies. Neurodegeneration is accompanied by neuroinflammation mediated by cytokines and chemokines produced by the activated microglia. Several studies demonstrated that such an inflammatory process is an early event, and contributes to oxidative stress and mitochondrial dysfunctions. α-synuclein fibrillization and aggregation activate microglia and contribute to disease onset and progression. Mutations in different genes exacerbate the inflammatory phenotype in the monogenic compared to sporadic forms of PD. Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) with selected radiopharmaceuticals allow in vivo imaging of molecular modifications in the brain of living subjects. Several publications showed a reduction of dopaminergic terminals and dopamine (DA) content in the basal ganglia, starting from the early stages of the disease. Moreover, non-dopaminergic neuronal pathways are also affected, as shown by in vivo studies with serotonergic and glutamatergic radiotracers. The role played by the immune system during illness progression could be investigated with PET ligands that target the microglia/macrophage Translocator protein (TSPO) receptor. These agents have been used in PD patients and rodent models, although often without attempting correlations with other molecular or functional parameters. For example, neurodegeneration and brain plasticity can be monitored using the metabolic marker 2-Deoxy-2-[18F]fluoroglucose ([18F]-FDG), while oxidative stress can be probed using the copper-labeled diacetyl-bis(N-methyl-thiosemicarbazone) ([Cu]-ATSM) radioligand, whose striatal-specific binding ratio in PD patients seems to correlate with a disease rating scale and motor scores. Also, structural and functional modifications during disease progression may be evaluated by Magnetic Resonance Imaging (MRI), using different parameters as iron content or cerebral volume. In this review article, we propose an overview of in vivo clinical and non-clinical imaging research on neuroinflammation as an emerging marker of early PD. We also discuss how multimodal-imaging approaches could provide more insights into the role of the inflammatory process and related events in PD development.

9.
Stem Cell Reports ; 14(5): 876-891, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32302555

RESUMO

Huntington disease (HD) is an inherited late-onset neurological disorder characterized by progressive neuronal loss and disruption of cortical and basal ganglia circuits. Cell replacement using human embryonic stem cells may offer the opportunity to repair the damaged circuits and significantly ameliorate disease conditions. Here, we showed that in-vitro-differentiated human striatal progenitors undergo maturation and integrate into host circuits upon intra-striatal transplantation in a rat model of HD. By combining graft-specific immunohistochemistry, rabies virus-mediated synaptic tracing, and ex vivo electrophysiology, we showed that grafts can extend projections to the appropriate target structures, including the globus pallidus, the subthalamic nucleus, and the substantia nigra, and receive synaptic contact from both host and graft cells with 6.6 ± 1.6 inputs cell per transplanted neuron. We have also shown that transplants elicited a significant improvement in sensory-motor tasks up to 2 months post-transplant further supporting the therapeutic potential of this approach.


Assuntos
Corpo Estriado/citologia , Células-Tronco Embrionárias Humanas/transplante , Doença de Huntington/terapia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Corpo Estriado/fisiologia , Células-Tronco Embrionárias Humanas/citologia , Humanos , Locomoção , Masculino , Células-Tronco Neurais/citologia , Neurogênese , Ratos , Regeneração , Sensação , Substância Negra/citologia , Substância Negra/fisiologia , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
10.
Front Aging Neurosci ; 11: 299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749696

RESUMO

Aging is associated with an exaggerated response to peripheral inflammatory challenges together with behavioral and cognitive deficits. Studies considering both age and sex remain limited, despite sex dimorphism of astrocytes and microglial cells is largely recognized. To fill this knowledge gap, we investigated the effect of a single intraperitoneal lipopolysaccharide (LPS) administration in adult and aged mice. We assessed the expression of different inflammatory mediators, and the microglial response through binding of [18F]-VC701 tracer to translocator protein (TSPO) receptors in the male and female brain. Aged female brain showed a higher pro-inflammatory response to LPS compared to adult female and to aged male, as revealed by ex vivo binding to TSPO receptors and pro-inflammatory mediator transcript levels. The highest astroglial reaction was observed in the brain of aged females. Differently to the other groups of animals, in aged males LPS challenge did not affect transcription of triggering receptor expressed on myeloid cells 2 (TREM2). In conclusion, our study shows that in the mouse's brain the neuro-inflammatory response to an acute peripheral insult is sex- and age-dependent. Moreover, our results might set the basis for further studies aimed at identifying sex-related targets involved in the modulation of the aberrant neuro-inflammatory response that characterizes aging. This knowledge could be relevant for the treatment of conditions such as delirium and dementia.

11.
Contrast Media Mol Imaging ; 2019: 5823261, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31598112

RESUMO

Cyclooxygenase-2 (COX-2) is involved in the inflammatory response, and its recurrent overexpression in cancers as well as in neurodegenerative disorders has made it an important target for therapy. For this reason, noninvasive imaging of COX-2 expression may represent an important diagnostic tool. In this work, a COX-2 inhibitor analogue, VA426 [1-(4-fluorophenyl)-3-(2-methoxyethyl)-2-methyl-5-(4-(methylsulfonil)phenyl)-1H-pyrrole], was synthesized and radiolabelled with the 11C radioisotope. The ex vivo biodistribution profile of 11C-VA426 was evaluated in the brain and periphery of healthy rats and mice and in brain and periphery of inflammation models, based on the administration of LPS. 11C-VA426 synthesis with the tBuOK base showed optimal radiochemical yield (15 ± 2%) based on triflate activity, molar activity (range 37-148 GBq/µmol), and radiochemical purity (>95%). Ex vivo biodistribution studies showed a fast uptake of radioactivity but a rapid washout, except in regions expressing COX-2 (lungs, liver, and kidney) both in rats and in mice, with maximum values at 30 and 10 minutes p.i., respectively. LPS administration did not show significant effect on radioactivity accumulation. Celecoxib competition experiments performed in rats and mice treated with LPS produced a general target unrelated reduction of radioactivity concentration in all peripheral tissues and brain areas examined. Finally, in agreement with the negative results obtained from biodistribution experiments, radiometabolites analysis revealed that 11C-VA426 is highly unstable in vivo. This study indicates that the compound 11C-VA426 is not currently suitable to be used as radiopharmaceutical for PET imaging. This family of compounds needs further implementation in order to improve in vivo stability.


Assuntos
Radioisótopos de Carbono , Ciclo-Oxigenase 2/análise , Inibidores de Ciclo-Oxigenase , Marcação por Isótopo/métodos , Compostos Radiofarmacêuticos/síntese química , Animais , Biotransformação , Celecoxib/farmacologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/síntese química , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Inflamação/induzido quimicamente , Inflamação/diagnóstico por imagem , Ligantes , Lipopolissacarídeos/toxicidade , Fígado/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA