Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Virol ; 96(2): e29456, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38329187

RESUMO

A state-wide prospective longitudinal investigation of the genomic surveillance of the omicron B.1.1.529 SARS-CoV-2 variant and its sublineages in Tamil Nadu, India, was conducted between December 2021 and March 2023. The study aimed to elucidate their mutational patterns and their genetic interrelationship in the Indian population. The study identified several unique mutations at different time-points, which likely could attribute to the changing disease characteristics, transmission, and pathogenicity attributes of omicron variants. The study found that the omicron variant is highly competent in its mutating potentials, and that it continues to evolve in the general population, likely escaping from natural as well as vaccine-induced immune responses. Our findings suggest that continuous surveillance of viral variants at the global scenario is warranted to undertake intervention measures against potentially precarious SARS-CoV-2 variants and their evolution.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Índia/epidemiologia , Estudos Longitudinais , Estudos Prospectivos , COVID-19/epidemiologia , Genômica
2.
J Family Med Prim Care ; 13(5): 1727-1733, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38948575

RESUMO

Introduction: The coronavirus disease 2019 (COVID-19) is a viral infection characterized by respiratory and gastrointestinal symptoms. The causative agent of this infection is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The genomic study helps in understanding the pathogenesis, epidemiology, and the development of therapeutic and preventive strategies in the combat against COVID-19. Materials and Methods: Nasopharyngeal and oropharyngeal swab samples were collected from asymptomatic and symptomatic patients during the time period of 2021-2022 for the detection of SARS-CoV-2 by employing real-time reverse transcriptase, cDNA synthesis, whole-genome sequencing by next-genome sequencing, analysis of SARS-CoV-2 sequence data and lineage and variant of concern assignment along with phylogenetic analysis. Results: Lineages BA.2.10 and BA.4.1.1 clustered with genomes from Senegal suggested the spread of infections. Similarly, high clustering among delta samples during the second wave showed possible importation and subsequent spread via local transmission. Conclusions: Studies like these are important to understand the characteristics and origins of locally circulating SARS-CoV-2 diversity in order to prevent further spread.

3.
Front Biosci (Landmark Ed) ; 29(3): 128, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38538288

RESUMO

BACKGROUND: Chronic viral infection results in impaired immune responses rendering viral persistence. Here, we compared the quality of T-cell responses among chronic hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency virus (HIV)-infected individuals by examining the levels of expression of selected immune activation and exhaustion molecules on circulating MAIT cells and Tfh cells. METHODS: Cytokines were measured using a commercial Bio-plex Pro Human Cytokine Grp I Panel 17-plex kit (BioRad, Hercules, CA, USA). Inflammation was assessed by measuring an array of plasma cytokines, and phenotypic alterations in CD4+ T cells including circulating Tfh cells, CD8+ T cells, and TCR iVα7.2+ MAIT cells in chronic HBV, HCV, and HIV-infected patients and healthy controls. The cells were characterized based on markers pertaining to immune activation (CD69, ICOS, and CD27) proliferation (Ki67), cytokine production (TNF-α, IFN-γ) and exhaustion (PD-1). The cytokine levels and T cell phenotypes together with cell markers were correlated with surrogate markers of disease progression. RESULTS: The activation marker CD69 was significantly increased in CD4+hi T cells, while CD8+ MAIT cells producing IFN-γ were significantly increased in chronic HBV, HCV and HIV infections. Six cell phenotypes, viz., TNF-α+CD4+lo T cells, CD69+CD8+ T cells, CD69+CD4+ MAIT cells, PD-1+CD4+hi T cells, PD-1+CD8+ T cells, and Ki67+CD4+ MAIT cells, were independently associated with decelerating the plasma viral load (PVL). TNF-α levels showed a positive correlation with increase in cytokine levels and decrease in PVL. CONCLUSION: Chronic viral infection negatively impacts the quality of peripheral MAIT cells and Tfh cells via differential expression of both activating and inhibitory receptors.


Assuntos
Infecções por HIV , Hepatite B Crônica , Hepatite C , Células T Invariantes Associadas à Mucosa , Humanos , Células T Invariantes Associadas à Mucosa/metabolismo , Receptor de Morte Celular Programada 1 , Fator de Necrose Tumoral alfa , Antígeno Ki-67 , Linfócitos T Auxiliares-Indutores/metabolismo , Citocinas/metabolismo , Vírus da Hepatite B , HIV
4.
Viral Immunol ; 37(5): 240-250, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38808464

RESUMO

Human pegivirus (HPgV) appears to alter the prognosis of HIV disease by modulating T cell homeostasis, chemokine/cytokine production, and T cell activation. In this study, we evaluated if HPgV had any 'favorable' impact on the quantity and quality of T cells in HIV-infected individuals. T cell subsets such as CD4lo, CD4hi, and CD8+ T cells, CD4+ MAIT cells, CD8+ MAIT cells, follicular helper T (TFH) cells, and follicular cytotoxic T (TFC) cells were characterized based on the expression of markers associated with immune activation (CD69, ICOS), proliferation (ki67), cytokine production (TNF-α, IFN-γ), and exhaustion (PD-1). HIV+HPgV+ individuals had lower transaminase SGOT (liver) and GGT (biliary) in the plasma than those who were HPgV-. HIV/HPgV coinfection was significantly associated with increased absolute CD4+ T cell counts. HIV+HPgV+ and HIV+HPgV- individuals had highly activated T cell subsets with high expression of CD69 and ICOS on bulk CD4+ and CD8+ T cells, CD4+ MAIT cells, CD8+ MAIT cells, and CXCR5+CD4+ T cells and CXCR5+CD8+ T cells compared with healthy controls. Irrespective of immune activation markers, these cells also displayed higher levels of PD-1 on CD4+ T and CD8+ T cells . Exploring effector functionality based on mitogen stimulation demonstrated increased cytokine production by CD4+ MAIT and CD8+ MAIT cells. Decrease in absolute CD4+ T cell counts correlated positively with intracellular IFN-γ levels by CD4lo T cells, whereas increase of the same correlated negatively with TNF-α in the CD4lo T cells of HIV+HPgV+ individuals. HIV/HPgV coinfected individuals display functional CD4+ and CD8+ MAIT, TFH, and TFC cells irrespective of PD-1 expression.


Assuntos
Coinfecção , Infecções por Flaviviridae , Infecções por HIV , Células T Invariantes Associadas à Mucosa , Receptor de Morte Celular Programada 1 , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Células T Invariantes Associadas à Mucosa/imunologia , Coinfecção/imunologia , Coinfecção/virologia , Masculino , Infecções por HIV/imunologia , Infecções por HIV/virologia , Adulto , Feminino , Infecções por Flaviviridae/imunologia , Infecções por Flaviviridae/virologia , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Subpopulações de Linfócitos T/imunologia , Citocinas/metabolismo , Células T Auxiliares Foliculares/imunologia , Antígenos de Diferenciação de Linfócitos T , Ativação Linfocitária/imunologia , Antígenos CD , Linfócitos T CD4-Positivos/imunologia , Lectinas Tipo C
5.
medRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38883728

RESUMO

Background: Dengue is a vector-borne viral disease impacting millions across the globe. Nevertheless, akin to many other diseases, reports indicated a decline in dengue incidence and seroprevalence during the COVID-19 pandemic (2020-22). This presumably could be attributed to reduced treatment-seeking rates, under-reporting, misdiagnosis, disrupted health services and reduced exposure to vectors due to lockdowns. Scientific evidence on dengue virus (DENV) disease during the COVID-19 pandemic is limited globally. Methods: A cross-sectional, randomized cluster sampling community-based survey was carried out to assess anti-dengue IgM and IgG and SARS-CoV-2 IgG seroprevalence across all 38 districts of Tamil Nadu, India. The prevalence of DENV in the Aedes mosquito pools during 2021 was analyzed and compared with previous and following years of vector surveillance for DENV by real-time PCR. Findings: Results implicate that both DENV-IgM and IgG seroprevalence and mosquito viral positivity were reduced across all the districts. A total of 13464 mosquito pools and 5577 human serum samples from 186 clusters were collected. Of these, 3·76% of mosquito pools were positive for DENV. In the human sera, 4·12% were positive for DENV IgM and 6·4% were positive for DENV IgG. The anti-SARS-CoV-2 antibody titres correlated with dengue seropositivity with a significant association whereas vaccination status significantly correlated with dengue IgM levels. Interpretation: Continuous monitoring of DENV seroprevalence, especially with the evolving variants of the SARS-CoV-2 virus and surge in COVID-19 cases will shed light on the transmission and therapeutic attributes of dengue infection.

6.
Sci Rep ; 14(1): 17476, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080396

RESUMO

In December 2023, we observed a notable shift in the COVID-19 landscape, when JN.1 omicron emerged as the predominant SARS-CoV-2 variant with a 95% incidence. We characterized the clinical profile, and genetic changes in JN.1, an emerging SARS-CoV-2 variant of interest. Whole genome sequencing was performed on SARS-CoV-2 positive clinical specimens, followed by sequence analysis. Mutations within the spike protein sequences were analysed and compared with the previously reported lineages and sub-lineages, to identify the potential impact of the unique mutations on protein structure and possible alterations in the functionality. Several unique and dynamic mutations were identified herein. Molecular docking analysis showed changes in the binding affinity, and key interacting residues of wild-type and mutated structures with key host cell receptors of SARS-CoV-2 entry viz., ACE2, CD147, CD209L and AXL. Our data provides key insights on the emergence of newer variants and highlights the necessity for robust and sustained global genomic surveillance of SARS-CoV-2.


Assuntos
COVID-19 , Mutação , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Índia/epidemiologia , COVID-19/virologia , COVID-19/epidemiologia , COVID-19/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Sequenciamento Completo do Genoma , Simulação de Acoplamento Molecular , Genoma Viral , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Idoso , Filogenia
7.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699322

RESUMO

In December 2023, we observed a notable shift in the COVID-19 landscape, when the JN.1 emerged as a predominant SARS-CoV-2 variant with a 95% incidence. We characterized the clinical profile, and genetic changes in JN.1, an emerging SARS-CoV-2 variant of interest. Whole genome sequencing was performed on SARS-CoV-2 positive samples, followed by sequence analysis. Mutations within the spike protein sequences were analyzed and compared with the previous lineages and sublineages of SARS-CoV-2, to identify the potential impact of these unique mutations on protein structure and possible functionality. Several unique and dynamic mutations were identified herein. Our data provides key insights into the emergence of newer variants of SARS-CoV-2 in our region and highlights the need for robust and sustained genomic surveillance of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA