RESUMO
Background: The epidemiology of Mycobacterium tuberculosis complex (MTBC) lineage 5 (L5) infections in Ghana revealed a significantly increased prevalence in Ewes compared to other self-reported ethnic groups. In that context, we sought to investigate the early phase of tuberculosis (TB) infection using ex vivo infection of macrophages derived from the blood of Ewe and Akan ethnic group volunteers with MTBC L4 and L5 strains. Methods: The study participants consisted of 16 controls, among which self-reported Akan and Ewe ethnicity was equally represented, as well as 20 cured TB cases consisting of 11 Akans and 9 Ewes. Peripheral blood mononuclear cells were isolated from both healthy controls and cured TB cases. CD14+ monocytes were isolated and differentiated into monocyte-derived macrophages (MDMs) before infection with L4 or L5 endemic strains. The bacterial load was assessed after 2 hours (uptake) as well as 3 and 7 days post-infection. Results: We observed a higher capacity of MDMs from Ewes to phagocytose L4 strains (p < 0.001), translating into a higher bacillary load on day 7 (p < 0.001) compared to L5, despite the higher replication rate of L5 in Ewe MDMs (fold change: 1.4 vs. 1.2, p = 0.03) among the controls. On the contrary, within macrophages from Akans, we observed a significantly higher phagocytic uptake of L5 (p < 0.001) compared to L4, also translating into a higher load on day 7 (p = 0.04). However, the replication rate of L4 in Akan MDMs was higher than that of L5 (fold change: L4 = 1.2, L4 = 1.1, p = 0.04). Although there was no significant difference in the uptake of L4 and L5 among cured TB cases, there was a higher bacterial load of both L4 (p = 0.02) and L5 (p = 0.02) on day 7 in Ewe MDMs. Conclusion: Our results suggest that host ethnicity (driven by host genetic diversity), MTBC genetic diversity, and individual TB infection history are all acting together to modulate the outcome of macrophage infections by MTBC.
Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Humanos , Animais , Feminino , Ovinos , Etnicidade , Gana/epidemiologia , Autorrelato , Leucócitos Mononucleares , MacrófagosRESUMO
Diarrheal disease remains a major global health problem particularly in children under 5 years and the emergence of antibiotic-resistant strains of causative pathogens could slow control efforts, particularly in settings where treatment options are limited. This surveillance study conducted in Ghana aimed to determine the prevalence and antimicrobial susceptibility profile of diarrhea-causing bacteria. This was a cross-sectional study carried out in five health facilities in the Ga West Municipality of Ghana between 2017 and 2021. Diarrheic stool samples from patients were collected and cultured on standard differential/selective media and isolates identified by standard biochemical tests, MALDI-TOF assay, and serological analysis. The antibiogram was determined using Kirby-Bauer disk diffusion and Microscan autoScan4 MIC panels which were used for extended-spectrum beta-lactamase (ESBL) detection. Bacteria were isolated from 97.5% (772/792) of stool samples, and 167 of the isolates were diarrheagenic and met our inclusion criteria for antimicrobial resistance (AMR) analysis. These included Escherichia coli (49.1%, 82/167), Salmonella species (23.9%, 40/167), Vibrio species (16.8%, 28/167), and Shigella species (10.2%, 17/167). Among 24 Vibrio species, we observed resistances to cefotaxime (21/24, 87.5%), ceftriaxone (20/24, 83.3%), and ciprofloxacin (6/24, 25%), including four multi-drug resistant isolates. All 13 Vibrio parahaemolyticus isolates were resistant to cefazolin. All 17 Shigella isolates were resistant to tetracycline with resistance to shigellosis drugs such as norfloxacin and ciprofloxacin. Salmonella isolates were highly susceptible to norfloxacin (40/40, 100%) and tetracycline (12/34, 35%). Two ESBL-producing E. coli were also identified with marked susceptibility to gentamicin (66/72, 91.7%) and amikacin (57/72, 79.2%) prescribed in the treatment of E. coli infections. This study showed the different bacteria implicated in diarrhea cases in Ghana and the need for differential diagnoses for better treatment outcomes. Escherichia coli, Shigella, Salmonella, and Vibrio have all been implicated in diarrhea cases in Ghana. The highest prevalence was E. coli and Salmonella with Shigella the least prevalent. Resistance to commonly used drugs found in these isolates may render bacteria infection treatment in the near future nearly impossible. Routine antimicrobial susceptibility testing, effective monitoring, and nationwide surveillance of AMR pathogens should be implemented to curb the increase of antimicrobial resistance in Ghana.
RESUMO
Background: Resistance to tuberculosis (TB) drugs has become a major threat to global control efforts. Early case detection and drug susceptibility profiling of the infecting bacteria are essential for appropriate case management. The objective of this study was to determine the drug susceptibility profiles of difficult-to-treat (DTT) TB patients in Ghana. Methods: Sputum samples obtained from DTT-TB cases from health facilities across Ghana were processed for rapid diagnosis and detection of drug resistance using the Genotype MTBDRplus and Genotype MTBDRsl.v2 from Hain Life science. Results: A total of 298 (90%) out of 331 sputum samples processed gave interpretable bands out of which 175 (58.7%) were resistant to at least one drug (ANYr); 16.8% (50/298) were isoniazid-mono-resistant (INHr), 16.8% (50/298) were rifampicin-mono-resistant (RIFr), and 25.2% (75/298) were MDR. 24 (13.7%) of the ANYr were additionally resistant to at least one second line drug: 7.4% (2 RIFr, 1 INHr, and 10 MDR samples) resistant to only FQs and 2.3% (2 RIFr, 1 INHr, and 1 MDR samples) resistant to AMG drugs kanamycin (KAN), amikacin (AMK), capreomycin (CAP), and viomycin (VIO). Additionally, there were 4.0% (5 RIFr and 2 MDR samples) resistant to both FQs and AMGs. 81 (65.6%) out of 125 INH-resistant samples including INHr and MDR had katG-mutations (MT) whereas 15 (12%) had inhApro-MT. The remaining 28 (22.4%) had both katG and inhA MT. All the 19 FQ-resistant samples were gyrA mutants whereas the 10 AMGs were rrs (3), eis (3) as well as rrs, and eis co-mutants (4). Except for the seven pre-XDR samples, no sample had eis MT. Conclusion: The detection of several pre-XDR TB cases in Ghana calls for intensified drug resistance surveillance and monitoring of TB patients to, respectively, ensure early diagnosis and treatment compliance.
RESUMO
Studies have shown an association between bacterial load and virulence; however, not much is known about the diversity in this phenotypic characteristic of Mycobacterium tuberculosis complex (MTBC). This study was therefore aimed to determine the differences in bacterial load of the three most prevalent MTBC genotypes (L4, L5, and L6) in West Africa at the time of diagnosis. A total of 170 paired fresh sputum samples were collected; one part in guanidinium thiocyanate (GTC) was used for RNA extraction and tuberculosis molecular bacterial load assay (TB-MBLA), and the other part without GTC was confirmed for TB positivity using GeneXpert MTB/RIF, smear microscopy grading, and culture on Löwenstein-Jensen media slants. The 170 sputum samples comprised 155 new cases, three follow-up cases, and 12 TB negative sputum samples. The time-to-culture positivity (TTP) and degree of culture positivity (DCP) were recorded. All 122 isolates obtained were spoligotyped for lineage (L) classification, but spoligotypes were obtained from 120 isolates. Of the typed isolates, 70.0, 10.8, 10.8, 4.2, 2.5, 0.8, and 0.8% were lineages 4, 5, 6, 2, 3, 1, and Mycobacterium bovis, respectively. Further analysis of the three most prevalent lineages showed significantly shorter TTP and higher DCP by L4 compared to L5 and L6, respectively: TTP 20.8, vs. 26.5, and 28.2 days; p-value = 0.005 and DCP 1.27, vs. 0.81 and 0.29, p < 0.001. The average TB-MBLA measured bacterial load of L4 was 3.82 Log10eCFU/ml which was not significantly different from 3.81 and 3.80 Log10eCFU/ml of L5 and L6, respectively, p = 0.84. Degrees of smear microscopy L4 = 1.20, L5 = 1.20, and L6 = 0.92 and GeneXpert Cq values L4 = 17.08, L5 = 18.37, and L6 = 17.59 showed no significant difference between the lineages, p = 0.72 and p = 0.48, respectively. Retrospective analysis of a larger sample confirmed the difference in TTP, p < 0.001. In conclusion, the observed shorter TTP and high DCP of L4 could signify high growth rate in culture that is independent of total bacterial load at diagnosis.
RESUMO
Findings from previous comparative genomics studies of the Mycobacterium tuberculosis complex (MTBC) suggest genomic variation among the genotypes may have phenotypic implications. We investigated the diversity in the phenotypic profiles of the main prevalent MTBC genotypes in West Africa. Thirty-six whole genome sequenced drug susceptible MTBC isolates belonging to lineages 4, 5 and 6 were included in this study. The isolates were phenotypically characterized for urease activity, tween hydrolysis, Thiophen-2-Carboxylic Acid Hydrazide (TCH) susceptibility, nitric oxide production, and growth rate in both liquid (7H9) and solid media (7H11 and Löwenstein-Jensen (L-J)). Lineage 4 isolates showed the highest growth rate in both liquid (p = 0.0003) and on solid (L-J) media supplemented with glycerol (p<0.001) or pyruvate (p = 0.005). L6 isolates optimally utilized pyruvate compared to glycerol (p<0.001), whereas L5 isolates grew similarly on both media (p = 0.05). Lineage 4 isolates showed the lowest average time to positivity (TTP) (p = 0.01; Average TTP: L4 = 15days, L5 = 16.7days, L6 = 29.7days) and the highest logCFU/mL (p = 0.04; average logCFU/mL L4 = 5.9, L5 = 5.0, L6 = 4.4) on 7H11 supplemented with glycerol, but there was no significant difference in growth on 7H11 supplemented with pyruvate (p = 0.23). The highest release of nitrite was recorded for L5 isolates, followed by L4 and L6 isolates. However, the reverse was observed in the urease activity for the lineages. All isolates tested were resistant to TCH except for one L6 isolate. Comparative genomic analyses revealed several mutations that might explain the diverse phenotypic profiles of these isolates. Our findings showed significant phenotypic diversity among the MTBC lineages used for this study.
Assuntos
Genótipo , Mycobacterium tuberculosis , Genômica , TuberculoseRESUMO
BACKGROUND: Tuberculosis (TB) and COVID-19 pandemics are both diseases of public health threat globally. Both diseases are caused by pathogens that infect mainly the respiratory system, and are involved in airborne transmission; they also share some clinical signs and symptoms. We, therefore, took advantage of collected sputum samples at the early stage of COVID-19 outbreak in Ghana to conduct differential diagnoses of long-standing endemic respiratory illness, particularly tuberculosis. METHODOLOGY: Sputum samples collected through the enhanced national surveys from suspected COVID-19 patients and contact tracing cases were analyzed for TB. The sputum samples were processed using Cepheid's GeneXpert MTB/RIF assay in pools of 4 samples to determine the presence of Mycobacterium tuberculosis complex. Positive pools were then decoupled and analyzed individually. Details of positive TB samples were forwarded to the NTP for appropriate case management. RESULTS: Seven-hundred and seventy-four sputum samples were analyzed for Mycobacterium tuberculosis in both suspected COVID-19 cases (679/774, 87.7%) and their contacts (95/774, 12.3%). A total of 111 (14.3%) were diagnosed with SARS CoV-2 infection and six (0.8%) out of the 774 individuals tested positive for pulmonary tuberculosis: five (83.3%) males and one female (16.7%). Drug susceptibility analysis identified 1 (16.7%) rifampicin-resistant tuberculosis case. Out of the six TB positive cases, 2 (33.3%) tested positive for COVID-19 indicating a coinfection. Stratifying by demography, three out of the six (50%) were from the Ayawaso West District. All positive cases received appropriate treatment at the respective sub-district according to the national guidelines. CONCLUSION: Our findings highlight the need for differential diagnosis among COVID-19 suspected cases and regular active TB surveillance in TB endemic settings.