Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 88(4): 2140-2157, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36701175

RESUMO

Here, we demonstrate that α-C-H and C-N bonds of unactivated secondary amides can be activated simultaneously by the copper catalyst to synthesize α-ketoamides or α-ketoesters in one step, which is a challenging and underdeveloped transformation. Using copper as a catalyst and air as an oxidant, the reaction is compatible with a broad range of acetoamides, amines, and alcohols. The preliminary mechanism studies and density functional theory calculation indicated that the reaction process may undergo first radical α-oxygenation and then transamidation with the help of the resonant six-membered N,O-chelation and molecular oxygen plays a role as an initiator to trigger the transamidation process. The combination of chelation assistance and dioxygen selective oxygenation strategy would substantially extend the modern mild synthetic amide cleavage toolbox, and we envision that this broadly applicable method will be of great interest in the biopharmaceutical industry, synthetic chemistry, and agrochemical industry.

2.
J Org Chem ; 86(18): 12664-12675, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34463102

RESUMO

The first [3 + 2 + 1] methodology for pyridine skeleton synthesis via cascade carbopalladation/cyclization of acetonitrile, arylboronic acids, and aldehydes was developed. This reaction proceeds via six step tandem reaction sequences involving the carbopalladation reaction of acetonitrile, a nucleophilic addition, a condensation, an intramolecular Michael addition, cyclization, and aromatization. Delightfully, both palladium acetate and supported palladium nanoparticles catalyzed this reaction with similar catalytic performance. The characterization results of the fresh and used supported palladium nanoparticle catalysts indicated that the reaction might be performed via a Pd(0)/Pd(II) catalytic cycle that began with Pd(0). Furthermore, the products showed good fluorescence characteristics. The green homogeneous/heterogenous catalytic methodologies pave a new way for constructing the pyridine skeleton.

3.
Org Lett ; 25(37): 6823-6829, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37695625

RESUMO

Herein, we disclose a common approach for palladium-catalyzed direct coupling of the ortho-C-H bond of aromatic aldehydes with various organoboronic reagents by a transient directing strategy. In contrast to widely used cross-coupling reactions of C-H bonds with aryl halides, which generally need silver salt as a halide removal reagent, the method which used BQ/TFA as weak oxidation system for the PdII/Pd0 redox cycle is cost-effective, ecofriendly, and more aligned with green catalysis. This broadly applicable method opens up a new and efficient Suzuki-Miyaura coupling route for the direct formation of carbon-carbon bonds by C-H bond activation.

4.
Front Chem ; 10: 855850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615308

RESUMO

The first heterogeneous catalyzed example for the direct synthesis of aromatic ketones via intermolecular carbopalladation of aliphatic nitriles and organoboron compounds was developed. This mild method proceeds with a supported palladium nanoparticles catalyst that could be reused and recycled five times. The fresh and used catalysts were characterized by XPS and TEM. The XPS analysis indicated that Pd0 was the active species for the reaction. This methodology provides a mild and cost-effective strategy for the efficient synthesis of ketones.

5.
ACS Omega ; 7(15): 12779-12786, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35474796

RESUMO

Carbon, an abundant, inexpensive, and nonmetallic material, is an inimitable support in heterogeneous catalysis, and variable carbonaceous materials have been utilized to support metal nanoparticle catalysts. We developed an efficient and stable heterogeneous catalyst with highly dispersed metallic palladium nanoparticles embedded in an ordered pore channel of mesoporous carbon and first applied the catalyst to construct imides from amides using aryl esters as an acylation reagent via C-O activation. The catalyst represents excellent catalytic performance and could be reused and recycled five times without any significant decrease in activity. The heterogeneous nature of metallic state palladium was proven to be the active center in the acylation reaction.

6.
RSC Adv ; 12(27): 17264-17275, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35765428

RESUMO

Herbal medicines often contain bioactive polysaccharides. However, many medicinal herbs have not been explored for any active saccharides that may play key roles in their bioactivities. Herein, we extracted a novel polysaccharide from Mirabilis himalaica (Edgew) heim (denoted MHHP), a popular medicinal ingredient in traditional medicines. The structural and morphological characteristics of MHHP were measured and elucidated by high-performance gel permeation chromatography, gas chromatography connected with mass spectrometry, Fourier transform infrared and nuclear magnetic resonance spectroscopy as well as scanning electron microscopy. MHHP was homogeneous with a molecular weight of 16.1 kDa, M w/M n = 1.33, containing mainly α-d-glucan residues with (1→4)-linkage. The biological activities of MHHP upon proliferation of splenic lymphocyte, activation of related cytokine and production of nitric oxide (NO) in RAW264.7 cells were investigated in vitro. MHHP induced proliferation of mouse spleen lymphocytes and significantly promoted the secretion in TNF-α, IL-6 and NO production in RAW264.7 cells. Meanwhile, MHHP exhibited relatively low antioxidant abilities. Our data suggested that MHHP may have potential immunoregulatory and anti-inflammatory activity, with a moderate antioxidant activity.

7.
Chem Commun (Camb) ; 57(85): 11229-11232, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34633012

RESUMO

The regiodivergent catalytic dehydrogenative cross-coupling reactions at both sp2 and sp3 hybridized carbons of aromatic compounds are particularly challenging. Herein, we report the finding of transient directing group controlled regiodivergent C(sp3)-C(sp2) and C(sp2)-C(sp2) cross-coupling in the o-methyl benzaldehyde frameworks. Catalyzed by palladium, using K2S2O8 or [F+] reagents as by-standing oxidants and unactivated arenes as substrates/solvents, various benzyl benzaldehydes or phenyl benzaldehydes were prepared. A mechanism study indicated that the regiospecificity is dominated by the [5,6]-fused palladacycle or [6,5]-fused palladacycle intermediates, which are generated from Pd-chelation with specified transient directing groups and further C-H activations.

8.
Int J Biol Macromol ; 89: 415-20, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27154517

RESUMO

Naturally occurring galactomannans were sulfated to give sulfated galactomannans with degrees of substitution of 0.7-1.4 per sugar unit and molecular weights of M¯n=0.6×10(4)-2.4×10(4). Sulfated galactomannans were found to have specific biological activities in vitro such as anticoagulant, anti-HIV and anti-Dengue virus activities. The biological activities were compared with those of standard dextran and curdlan sulfates, which are polysaccharides with potent antiviral activity and low cytotoxicity. It was found that sulfated galactomannans had moderate to high anticoagulant activity, 13.4-36.6unit/mg, compared to that of dextran and curdlan sulfates, 22.7 and 10.0unit/mg, and high anti-HIV and anti-Dengue virus activities, 0.04-0.8µg/mL and 0.2-1.1µg/mL, compared to those curdlan sulfates, 0.1µg/mL, respectively. The cytotoxicity on MT-4 and LCC-MK2 cells was low. Surface plasmon resonance (SPR) of sulfated galactomannans revealed strong interaction with poly-l-lysine as a model compound of virus proteins, and suggested that the specific biological activities might originate in the electrostatic interaction of negatively charged sulfate groups of sulfated galactomannans and positively charged amino groups of surface proteins of viruses. These results suggest that sulfated galactomannans effectively prevented the infection of cells by viruses and the degree of substitution and molecular weights played important roles in the biological activities.


Assuntos
Antivirais/química , Vírus da Dengue/efeitos dos fármacos , HIV/efeitos dos fármacos , Mananas/química , Anticoagulantes/química , Anticoagulantes/uso terapêutico , Antivirais/uso terapêutico , Dengue/tratamento farmacológico , Dengue/virologia , Galactose/análogos & derivados , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Mananas/uso terapêutico , Polilisina/química , Sulfatos/química , beta-Glucanas/química
9.
Carbohydr Polym ; 94(2): 899-903, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23544648

RESUMO

The sulfation of konjac glucomannan and its anti-HIV and blood anticoagulant activities were investigated. Konjac glucomannan is a polysaccharide occurring naturally in konjac plant tubers and has high molecular weights. Solubility in water is very low, and the aqueous solutions at low concentrations have high viscosity. Before sulfation, hydrolysis by diluted sulfuric acid was carried out to decrease the molecular weights of M¯n=19.2 × 10(4)-0.2 × 10(4). Sulfation with piperidine-N-sulfonic acid or SO3-pyridine complex gave sulfated konjac glucomannans with molecular weights of M¯n=1.0 × 10(4)-0.4 × 10(4) and degrees of sulfation (DS) of 1.3-1.4. It was found that the sulfated konjac glucomannans had potent anti-HIV activity at a 50% effective concentration, (EC50) of 1.2-1.3 µg/ml, which was almost as high as that of an AIDS drug, ddC, whose EC50=3.2 µg/ml, and moderate blood anticoagulant activity, AA=0.8-22.7 units/mg, compared to those of standard sulfated polysaccharides, curdlan (10 units/mg) and dextran (22.7 units/mg) sulfates. Structural analysis of sulfated konjac glucomannans with negatively charged sulfated groups was performed by high resolution NMR, and the interaction between poly-l-lysine with positively charged amino groups as a model compound of proteins and peptides was measured by surface plasmon resonance measurement, suggesting that the sulfated konjac glucomannans had a high binding stability on immobilized poly-l-lysine. The binding of sulfated konjac glucomannan was concentration-dependent, and the biological activity of the sulfated konjac glucomannans may be due to electrostatic interaction between the sulfate and amino groups.


Assuntos
Fármacos Anti-HIV/química , Mananas/química , Sulfatos/química , Fármacos Anti-HIV/farmacologia , Anticoagulantes/química , Anticoagulantes/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Linhagem Celular , Espectroscopia de Ressonância de Spin Eletrônica , HIV/efeitos dos fármacos , Humanos , Mananas/metabolismo , Mananas/farmacologia , Peso Molecular , Polilisina/química , Polilisina/metabolismo , Eletricidade Estática
10.
PLoS Negl Trop Dis ; 7(4): e2188, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658845

RESUMO

Curdlan sulfate (CRDS), a sulfated 1→3-ß-D glucan, previously shown to be a potent HIV entry inhibitor, is characterized in this study as a potent inhibitor of the Dengue virus (DENV). CRDS was identified by in silico blind docking studies to exhibit binding potential to the envelope (E) protein of the DENV. CRDS was shown to inhibit the DENV replication very efficiently in different cells in vitro. Minimal effective concentration of CRDS was as low as 0.1 µg/mL in LLC-MK2 cells, and toxicity was observed only at concentrations over 10 mg/mL. CRDS can also inhibit DENV-1, 3, and 4 efficiently. CRDS did not inhibit the replication of DENV subgenomic replicon. Time of addition experiments demonstrated that the compound not only inhibited viral infection at the host cell binding step, but also at an early post-attachment step of entry (membrane fusion). The direct binding of CRDS to DENV was suggested by an evident reduction in the viral titers after interaction of the virus with CRDS following an ultrafiltration device separation, as well as after virus adsorption to an alkyl CRDS-coated membrane filter. The electron microscopic features also showed that CRDS interacted directly with the viral envelope, and caused changes to the viral surface. CRDS also potently inhibited DENV infection in DC-SIGN expressing cells as well as the antibody-dependent enhancement of DENV-2 infection. Based on these data, a probable binding model of CRDS to DENV E protein was constructed by a flexible receptor and ligand docking study. The binding site of CRDS was predicted to be at the interface between domains II and III of E protein dimer, which is unique to this compound, and is apparently different from the ß-OG binding site. Since CRDS has already been tested in humans without serious side effects, its clinical application can be considered.


Assuntos
Anticorpos Facilitadores/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos , Dengue/imunologia , Replicação Viral/efeitos dos fármacos , beta-Glucanas/farmacologia , Animais , Linhagem Celular , Vírus da Dengue/imunologia , Vírus da Dengue/fisiologia , Macaca mulatta , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA