Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Bacteriol ; 195(14): 3183-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23667233

RESUMO

All organisms require S-adenosylmethionine (SAM) as a methyl group donor and cofactor for various biologically important processes. However, certain obligate intracellular parasitic bacteria and also the amoeba symbiont Amoebophilus asiaticus have lost the capacity to synthesize this cofactor and hence rely on its uptake from host cells. Genome analyses revealed that A. asiaticus encodes a putative SAM transporter. The corresponding protein was functionally characterized in Escherichia coli: import studies demonstrated that it is specific for SAM and S-adenosylhomocysteine (SAH), the end product of methylation. SAM transport activity was shown to be highly dependent on the presence of a membrane potential, and by targeted analyses, we obtained direct evidence for a proton-driven SAM/SAH antiport mechanism. Sequence analyses suggest that SAM carriers from Rickettsiales might operate in a similar way, in contrast to chlamydial SAM transporters. SAM/SAH antiport is of high physiological importance, as it allows for compensation for the missing methylation cycle. The identification of a SAM transporter in A. asiaticus belonging to the Bacteroidetes phylum demonstrates that SAM transport is more widely spread than previously assumed and occurs in bacteria belonging to three different phyla (Proteobacteria, Chlamydiae, and Bacteroidetes).


Assuntos
Antiporters/metabolismo , Bacteroidetes/metabolismo , S-Adenosilmetionina/metabolismo , Antiporters/genética , Bacteroidetes/genética , Clonagem Molecular , Biologia Computacional , Escherichia coli/genética , Escherichia coli/metabolismo , S-Adenosil-Homocisteína/metabolismo , Especificidade por Substrato
2.
J Bacteriol ; 193(1): 225-35, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20971898

RESUMO

Intracellular bacteria live in an environment rich in most essential metabolites but need special mechanisms to access these substrates. Nucleotide transport proteins (NTTs) catalyze the import of ATP and other nucleotides from the eukaryotic host into the bacterial cell and render de novo synthesis of these compounds dispensable. The draft genome sequence of Simkania negevensis strain Z, a chlamydial organism considered a newly emerging pathogen, revealed four genes encoding putative nucleotide transport proteins (SnNTT1 to SnNTT4), all of which are transcribed during growth of S. negevensis in Acanthamoeba host cells, as confirmed by reverse transcription-PCR. Using heterologous expression in Escherichia coli, we could show that SnNTT1 functions as an ATP/ADP antiporter, SnNTT2 as a guanine nucleotide/ATP/H(+) symporter driven by the membrane potential, and SnNTT3 as a nucleotide triphosphate antiporter. In addition, SnNTT3 is able to transport dCTP, which has not been shown for a prokaryotic transport protein before. No substrate could be identified for SnNTT4. Taking these data together, S. negevensis employs a set of nucleotide transport proteins to efficiently tap its host's energy and nucleotide pools. Although similar to other chlamydiae, these transporters show distinct and unique adaptations with respect to substrate specificities and mode of transport.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydiales/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/genética , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica/fisiologia , Genoma Bacteriano , Proteínas de Transporte de Nucleotídeos/genética , Nucleotídeos/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA