Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Bioessays ; 43(1): e2000207, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226145

RESUMO

Ferritins (FTs) are iron storage proteins that are involved in managing iron-oxygen balance. In our work, we present a hypothesis on the putative effect of geological changes that have affected the evolution and radiation of ferritin proteins. Based on sequence analysis and phylogeny reconstruction, we hypothesize that two significant factors have been involved in the evolution of ferritin proteins: fluctuations of atmospheric oxygen concentrations, altering redox potential, and changing availability of water rich in bioavailable ferric ions. Fish, ancient amphibians, reptiles, and placental mammals developed the broadest repertoire of singular FTs, attributable to embryonic growth in aquatic environments containing low oxygen levels and abundant forms of soluble iron. In contrast, oviparous land vertebrates, like reptiles and birds, that have developed in high oxygen levels and limited levels of environmental Fe2+ exhibit a lower diversity of singular FTs, but display a broad repertoire of subfamilies, particularly notable in early reptiles.


Assuntos
Cordados , Ferritinas , Animais , Cordados/metabolismo , Feminino , Ferritinas/genética , Ferro , Filogenia , Placenta/metabolismo , Gravidez
2.
Environ Microbiol ; 24(8): 3809-3825, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35415861

RESUMO

Fungi can be found in almost all ecosystems. Some of them can even survive in harsh, anthropogenically transformed environments, such as post-industrial soils. In order to verify how the soil fungal diversity may be changed by pollution, two soil samples from each of the 28 post-industrial sites were collected. Each soil sample was characterized in terms of concentration of heavy metals and petroleum derivatives. To identify soil fungal communities, fungal internal transcribed spacer 2 (ITS2) amplicon was sequenced for each sample using Illumina MiSeq platform. There were significant differences in the community structure and taxonomic diversity among the analysed samples. The highest taxon richness and evenness were observed in the non-polluted sites, and lower numbers of taxa were identified in multi-polluted soils. The presence of monocyclic aromatic hydrocarbons, gasoline and mineral oil was determined as the factors driving the differences in the mycobiome. Furthermore, in the culture-based selection experiment, two main groups of fungi growing on polluted media were identified - generalists able to live in the presence of pollution, and specialists adapted to the usage of BTEX as a sole source of energy. Our selection experiment proved that it is long-term soil contamination that shapes the community, rather than temporary addition of pollutant.


Assuntos
Micobioma , Poluentes do Solo , Ecossistema , Fungos/genética , Micobioma/genética , Solo/química , Microbiologia do Solo
3.
Fungal Genet Biol ; 138: 103351, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32028048

RESUMO

Modern genome analysis and phylogenomic methods have increased the number of fungal species, as well as enhanced appreciation of the degree of diversity within the fungal kingdom. In this context, we describe a new Parengyodontium species, P. americanum, which is phylogenetically related to the opportunistic human fungal pathogen P. album. Five unusual fungal isolates were recovered from five unique and confirmed coccidioidomycosis patients, and these isolates were subsequently submitted to detailed molecular and morphological identification procedures to determine identity. Molecular and morphological diagnostic analyses showed that the isolates belong to the Cordycipitaceae. Subsequently, three representative genomes were sequenced and annotated, and a new species, P. americanum, was identified. Using various genomic analyses, gene family expansions related to novel compounds and potential for ability to grow in diverse habitats are predicted. A general description of the genomic composition of this newly described species and comparison of genome content with Beauveria bassiana, Isaria fumosorosea and Cordyceps militaris shows a shared core genome of 6371 genes, and 148 genes that appear to be specific for P. americanum. This work provides the framework for future investigations of this interesting fungal species.


Assuntos
Coccidioidomicose/microbiologia , Hypocreales , Beauveria/genética , Cordyceps/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Humanos , Hypocreales/classificação , Hypocreales/citologia , Hypocreales/genética , Hypocreales/isolamento & purificação , Infecções Oportunistas/microbiologia , Filogenia , Proteômica
4.
Proc Natl Acad Sci U S A ; 113(25): E3482-91, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27185916

RESUMO

The modification of proteins by phosphorylation occurs in all life forms and is catalyzed by a large superfamily of enzymes known as protein kinases. We recently discovered a family of secretory pathway kinases that phosphorylate extracellular proteins. One member, family with sequence similarity 20C (Fam20C), is the physiological Golgi casein kinase. While examining distantly related protein sequences, we observed low levels of identity between the spore coat protein H (CotH), and the Fam20C-related secretory pathway kinases. CotH is a component of the spore in many bacterial and eukaryotic species, and is required for efficient germination of spores in Bacillus subtilis; however, the mechanism by which CotH affects germination is unclear. Here, we show that CotH is a protein kinase. The crystal structure of CotH reveals an atypical protein kinase-like fold with a unique mode of ATP binding. Examination of the genes neighboring cotH in B. subtilis led us to identify two spore coat proteins, CotB and CotG, as CotH substrates. Furthermore, we show that CotH-dependent phosphorylation of CotB and CotG is required for the efficient germination of B. subtilis spores. Collectively, our results define a family of atypical protein kinases and reveal an unexpected role for protein phosphorylation in spore biology.


Assuntos
Proteínas Quinases , Esporos Bacterianos/genética , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas do Capsídeo , Fosforilação
5.
Int J Mol Sci ; 20(12)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234450

RESUMO

 Mono-saturated polyprenols (dolichols) have been found in almost all Eukaryotic cells, however, dolichols containing additional saturated bonds at the ω-end, have been identified in A. fumigatus and A. niger. Here we confirm using an LC-ESI-QTOF-MS analysis, that poly-saturated dolichols are abundant in other filamentous fungi, Trichoderma reesei, A. nidulans and Neurospora crassa, while the yeast Saccharomyces cerevisiae only contains the typical mono-saturated dolichols. We also show, using differential scanning calorimetry (DSC) and fluorescence anisotropy of 1,6-diphenyl-l,3,5-hexatriene (DPH) that the structure of dolichols modulates the properties of membranes and affects the functioning of dolichyl diphosphate mannose synthase (DPMS). The activity of this enzyme from T. reesei and S. cerevisiae was strongly affected by the structure of dolichols. Additionally, the structure of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) model membranes was more strongly disturbed by the poly-saturated dolichols from Trichoderma than by the mono-saturated dolichols from yeast. By comparing the lipidome of filamentous fungi with that from S. cerevisiae, we revealed significant differences in the PC/PE ratio and fatty acids composition. Filamentous fungi differ from S. cerevisiae in the lipid composition of their membranes and the structure of dolichols. The structure of dolichols profoundly affects the functioning of dolichol-dependent enzyme, DPMS.


Assuntos
Dolicóis/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Glicosiltransferases/metabolismo , Aspergillus niger/química , Aspergillus niger/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Dolicóis/análise , Fungos/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Modelos Moleculares , Neurospora crassa/química , Neurospora crassa/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Trichoderma/química , Trichoderma/metabolismo
6.
Plant Physiol ; 174(1): 27-34, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28298478

RESUMO

H1 (or linker) histones are basic nuclear proteins that possess an evolutionarily conserved nucleosome-binding globular domain, GH1. They perform critical functions in determining the accessibility of chromatin DNA to trans-acting factors. In most metazoan species studied so far, linker histones are highly heterogenous, with numerous nonallelic variants cooccurring in the same cells. The phylogenetic relationships among these variants as well as their structural and functional properties have been relatively well established. This contrasts markedly with the rather limited knowledge concerning the phylogeny and structural and functional roles of an unusually diverse group of GH1-containing proteins in plants. The dearth of information and the lack of a coherent phylogeny-based nomenclature of these proteins can lead to misunderstandings regarding their identity and possible relationships, thereby hampering plant chromatin research. Based on published data and our in silico and high-throughput analyses, we propose a systematization and coherent nomenclature of GH1-containing proteins of Arabidopsis (Arabidopsis thaliana [L.] Heynh) that will be useful for both the identification and structural and functional characterization of homologous proteins from other plant species.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Histonas/genética , Filogenia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Bases de Dados Genéticas , Bases de Dados de Proteínas , Histonas/classificação , Histonas/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/genética , Plantas/metabolismo , Especificidade da Espécie
7.
Nucleic Acids Res ; 44(8): 3534-48, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27060136

RESUMO

FAM46 proteins, encoded in all known animal genomes, belong to the nucleotidyltransferase (NTase) fold superfamily. All four human FAM46 paralogs (FAM46A, FAM46B, FAM46C, FAM46D) are thought to be involved in several diseases, with FAM46C reported as a causal driver of multiple myeloma; however, their exact functions remain unknown. By using a combination of various bioinformatics analyses (e.g. domain architecture, cellular localization) and exhaustive literature and database searches (e.g. expression profiles, protein interactors), we classified FAM46 proteins as active non-canonical poly(A) polymerases, which modify cytosolic and/or nuclear RNA 3' ends. These proteins may thus regulate gene expression and probably play a critical role during cell differentiation. A detailed analysis of sequence and structure diversity of known NTases possessing PAP/OAS1 SBD domain, combined with state-of-the-art comparative modelling, allowed us to identify potential active site residues responsible for catalysis and substrate binding. We also explored the role of single point mutations found in human cancers and propose that FAM46 genes may be involved in the development of other major malignancies including lung, colorectal, hepatocellular, head and neck, urothelial, endometrial and renal papillary carcinomas and melanoma. Identification of these novel enzymes taking part in RNA metabolism in eukaryotes may guide their further functional studies.


Assuntos
Domínio Catalítico/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Polinucleotídeo Adenililtransferase/genética , Proteínas/genética , Biologia Computacional , Bases de Dados Genéticas , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas de Neoplasias/metabolismo , Nucleotidiltransferases , Polinucleotídeo Adenililtransferase/metabolismo , Proteínas/metabolismo
8.
Plant Physiol ; 169(3): 2080-101, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26351307

RESUMO

Linker (H1) histones play critical roles in chromatin compaction in higher eukaryotes. They are also the most variable of the histones, with numerous nonallelic variants cooccurring in the same cell. Plants contain a distinct subclass of minor H1 variants that are induced by drought and abscisic acid and have been implicated in mediating adaptive responses to stress. However, how these variants facilitate adaptation remains poorly understood. Here, we show that the single Arabidopsis (Arabidopsis thaliana) stress-inducible variant H1.3 occurs in plants in two separate and most likely autonomous pools: a constitutive guard cell-specific pool and a facultative environmentally controlled pool localized in other tissues. Physiological and transcriptomic analyses of h1.3 null mutants demonstrate that H1.3 is required for both proper stomatal functioning under normal growth conditions and adaptive developmental responses to combined light and water deficiency. Using fluorescence recovery after photobleaching analysis, we show that H1.3 has superfast chromatin dynamics, and in contrast to the main Arabidopsis H1 variants H1.1 and H1.2, it has no stable bound fraction. The results of global occupancy studies demonstrate that, while H1.3 has the same overall binding properties as the main H1 variants, including predominant heterochromatin localization, it differs from them in its preferences for chromatin regions with epigenetic signatures of active and repressed transcription. We also show that H1.3 is required for a substantial part of DNA methylation associated with environmental stress, suggesting that the likely mechanism underlying H1.3 function may be the facilitation of chromatin accessibility by direct competition with the main H1 variants.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histonas/genética , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Cromatina/genética , Cromatina/metabolismo , Metilação de DNA , Secas , Epigênese Genética , Genes Reporter , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico
9.
Nucleic Acids Res ; 42(7): 4160-79, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24464998

RESUMO

Ribonuclease H-like (RNHL) superfamily, also called the retroviral integrase superfamily, groups together numerous enzymes involved in nucleic acid metabolism and implicated in many biological processes, including replication, homologous recombination, DNA repair, transposition and RNA interference. The RNHL superfamily proteins show extensive divergence of sequences and structures. We conducted database searches to identify members of the RNHL superfamily (including those previously unknown), yielding >60 000 unique domain sequences. Our analysis led to the identification of new RNHL superfamily members, such as RRXRR (PF14239), DUF460 (PF04312, COG2433), DUF3010 (PF11215), DUF429 (PF04250 and COG2410, COG4328, COG4923), DUF1092 (PF06485), COG5558, OrfB_IS605 (PF01385, COG0675) and Peptidase_A17 (PF05380). Based on the clustering analysis we grouped all identified RNHL domain sequences into 152 families. Phylogenetic studies revealed relationships between these families, and suggested a possible history of the evolution of RNHL fold and its active site. Our results revealed clear division of the RNHL superfamily into exonucleases and endonucleases. Structural analyses of features characteristic for particular groups revealed a correlation between the orientation of the C-terminal helix with the exonuclease/endonuclease function and the architecture of the active site. Our analysis provides a comprehensive picture of sequence-structure-function relationships in the RNHL superfamily that may guide functional studies of the previously uncharacterized protein families.


Assuntos
Ribonuclease H/química , Ribonuclease H/classificação , Análise por Conglomerados , Evolução Molecular , Exonucleases/classificação , Filogenia , Estrutura Terciária de Proteína , Ribonuclease H/genética , Alinhamento de Sequência
10.
Nucleic Acids Res ; 41(5): 3144-61, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23358826

RESUMO

Although the human mitochondrial genome has been investigated for several decades, the proteins responsible for its replication and expression, especially nucleolytic enzymes, are poorly described. Here, we characterized a novel putative PD-(D/E)XK nuclease encoded by the human C20orf72 gene named Ddk1 for its predicted catalytic residues. We show that Ddk1 is a mitochondrially localized metal-dependent DNase lacking detectable ribonuclease activity. Ddk1 degrades DNA mainly in a 3'-5' direction with a strong preference for single-stranded DNA. Interestingly, Ddk1 requires free ends for its activity and does not degrade circular substrates. In addition, when a chimeric RNA-DNA substrate is provided, Ddk1 can slide over the RNA fragment and digest DNA endonucleolytically. Although the levels of the mitochondrial DNA are unchanged on RNAi-mediated depletion of Ddk1, the mitochondrial single-stranded DNA molecule (7S DNA) accumulates. On the other hand, overexperssion of Ddk1 decreases the levels of 7S DNA, suggesting an important role of the protein in 7S DNA regulation. We propose a structural model of Ddk1 and discuss its similarity to other PD-(D/E)XK superfamily members.


Assuntos
DNA Mitocondrial/metabolismo , Exodesoxirribonucleases/genética , Mitocôndrias/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Clivagem do DNA , DNA de Cadeia Simples/química , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Mitocôndrias/genética , Modelos Moleculares , Anotação de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Estrutura Secundária de Proteína , Transporte Proteico , RNA Interferente Pequeno/genética , Análise de Sequência de DNA
11.
Nucleic Acids Res ; 40(15): 7016-45, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22638584

RESUMO

Proteins belonging to PD-(D/E)XK phosphodiesterases constitute a functionally diverse superfamily with representatives involved in replication, restriction, DNA repair and tRNA-intron splicing. Their malfunction in humans triggers severe diseases, such as Fanconi anemia and Xeroderma pigmentosum. To date there have been several attempts to identify and classify new PD-(D/E)KK phosphodiesterases using remote homology detection methods. Such efforts are complicated, because the superfamily exhibits extreme sequence and structural divergence. Using advanced homology detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses, we provide a comprehensive reclassification of proteins containing a PD-(D/E)XK domain. The PD-(D/E)XK phosphodiesterases span over 21,900 proteins, which can be classified into 121 groups of various families. Eleven of them, including DUF4420, DUF3883, DUF4263, COG5482, COG1395, Tsp45I, HaeII, Eco47II, ScaI, HpaII and Replic_Relax, are newly assigned to the PD-(D/E)XK superfamily. Some groups of PD-(D/E)XK proteins are present in all domains of life, whereas others occur within small numbers of organisms. We observed multiple horizontal gene transfers even between human pathogenic bacteria or from Prokaryota to Eukaryota. Uncommon domain arrangements greatly elaborate the PD-(D/E)XK world. These include domain architectures suggesting regulatory roles in Eukaryotes, like stress sensing and cell-cycle regulation. Our results may inspire further experimental studies aimed at identification of exact biological functions, specific substrates and molecular mechanisms of reactions performed by these highly diverse proteins.


Assuntos
Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/classificação , Sequência de Aminoácidos , Domínio Catalítico , Enzimas de Restrição do DNA/química , Transferência Genética Horizontal , Modelos Moleculares , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/genética , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína
12.
PLoS Genet ; 7(10): e1002345, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22046142

RESUMO

Paracoccidioides is a fungal pathogen and the cause of paracoccidioidomycosis, a health-threatening human systemic mycosis endemic to Latin America. Infection by Paracoccidioides, a dimorphic fungus in the order Onygenales, is coupled with a thermally regulated transition from a soil-dwelling filamentous form to a yeast-like pathogenic form. To better understand the genetic basis of growth and pathogenicity in Paracoccidioides, we sequenced the genomes of two strains of Paracoccidioides brasiliensis (Pb03 and Pb18) and one strain of Paracoccidioides lutzii (Pb01). These genomes range in size from 29.1 Mb to 32.9 Mb and encode 7,610 to 8,130 genes. To enable genetic studies, we mapped 94% of the P. brasiliensis Pb18 assembly onto five chromosomes. We characterized gene family content across Onygenales and related fungi, and within Paracoccidioides we found expansions of the fungal-specific kinase family FunK1. Additionally, the Onygenales have lost many genes involved in carbohydrate metabolism and fewer genes involved in protein metabolism, resulting in a higher ratio of proteases to carbohydrate active enzymes in the Onygenales than their relatives. To determine if gene content correlated with growth on different substrates, we screened the non-pathogenic onygenale Uncinocarpus reesii, which has orthologs for 91% of Paracoccidioides metabolic genes, for growth on 190 carbon sources. U. reesii showed growth on a limited range of carbohydrates, primarily basic plant sugars and cell wall components; this suggests that Onygenales, including dimorphic fungi, can degrade cellulosic plant material in the soil. In addition, U. reesii grew on gelatin and a wide range of dipeptides and amino acids, indicating a preference for proteinaceous growth substrates over carbohydrates, which may enable these fungi to also degrade animal biomass. These capabilities for degrading plant and animal substrates suggest a duality in lifestyle that could enable pathogenic species of Onygenales to transfer from soil to animal hosts.


Assuntos
Onygenales/genética , Paracoccidioides/genética , Paracoccidioidomicose/microbiologia , Proteínas Quinases/genética , Metabolismo dos Carboidratos/genética , Sistemas de Liberação de Medicamentos , Evolução Molecular , Genoma Fúngico , Genoma Mitocondrial/genética , Humanos , Família Multigênica/genética , Onygenales/enzimologia , Paracoccidioides/enzimologia , Filogenia , Proteólise , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA
13.
Sci Rep ; 14(1): 9922, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688950

RESUMO

Fanconi Anemia (FA) pathway resolves DNA interstrand cross links (ICL). The FA pathway was initially recognized in vertebrates, but was later confirmed in other animals and speculated in fungi. FA proteins FANCM, FANCL and FANCJ are present in Saccharomyces cerevisiae but, their mechanism of interaction to resolve ICL is still unclear. Unlike Dikarya, early diverging fungi (EDF) possess more traits shared with animals. We traced the evolutionary history of the FA pathway across Opisthokonta. We scanned complete proteomes for FA-related homologs to establish their taxonomic distribution and analyzed their phylogenetic trees. We checked transcription profiles of FA genes to test if they respond to environmental conditions and their genomic localizations for potential co-localization. We identified fungal homologs of the activation and ID complexes, 5 out of 8 core proteins, all of the endonucleases, and deubiquitination proteins. All fungi lack FANCC, FANCF and FANCG proteins responsible for post-replication repair and chromosome stability in animals. The observed taxonomic distribution can be attributed to a gradual degradation of the FA pathway from EDF to Dikarya. One of the key differences is that EDF have the ID complex recruiting endonucleases to the site of ICL. Moreover, 21 out of 32 identified FA genes are upregulated in response to different growth conditions. Several FA genes are co-localized in fungal genomes which also could facilitate co-expression. Our results indicate that a minimal FA pathway might still be functional in Mucoromycota with a gradual loss of components in Dikarya ancestors.


Assuntos
Filogenia , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Fungos/genética , Fungos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Evolução Molecular , Reparo do DNA
14.
Nat Commun ; 15(1): 6066, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39025853

RESUMO

DNA N6-adenine methylation (6mA) has recently gained importance as an epigenetic modification in eukaryotes. Its function in lineages with high levels, such as early-diverging fungi (EDF), is of particular interest. Here, we investigated the biological significance and evolutionary implications of 6mA in EDF, which exhibit divergent evolutionary patterns in 6mA usage. The analysis of two Mucorales species displaying extreme 6mA usage reveals that species with high 6mA levels show symmetric methylation enriched in highly expressed genes. In contrast, species with low 6mA levels show mostly asymmetric 6mA. Interestingly, transcriptomic regulation throughout development and in response to environmental cues is associated with changes in the 6mA landscape. Furthermore, we identify an EDF-specific methyltransferase, likely originated from endosymbiotic bacteria, as responsible for asymmetric methylation, while an MTA-70 methylation complex performs symmetric methylation. The distinct phenotypes observed in the corresponding mutants reinforced the critical role of both types of 6mA in EDF.


Assuntos
Adenina , Metilação de DNA , Regulação Fúngica da Expressão Gênica , Mucorales , Adenina/metabolismo , Mucorales/genética , Mucorales/metabolismo , Epigênese Genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Filogenia , Evolução Molecular , Metiltransferases/metabolismo , Metiltransferases/genética , DNA Fúngico/genética , DNA Fúngico/metabolismo , Mutação
15.
IMA Fungus ; 14(1): 17, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670396

RESUMO

Fucose is a deoxyhexose sugar present and studied in mammals. The process of fucosylation has been the primary focus in studies relating to fucose in animals due to the presence of fucose in Lewis antigens. Very few studies have reported its presence in Fungi, mostly in Mucoromycotina. The constitution of 25% and 12% of this sugar in the carbohydrates of cell wall in the respective Umbelopsis and Mucorales strains boosts the need to bridge the gap of knowledge on fucose metabolism across the fungal tree of life. In the absence of a network map involving fucose proteins, we carried out an in-silico approach to construct the fucose metabolic map in Fungi. We analyzed the taxonomic distribution of 85 protein families in Fungi including diverse early diverging fungal lineages. The expression of fucose-related protein-coding genes proteins was validated with the help of transcriptomic data originating from representatives of early diverging fungi. We found proteins involved in several metabolic activities apart from fucosylation such as synthesis, transport and binding. Most of the identified protein families are shared with Metazoa suggesting an ancestral origin in Opisthokonta. However, the overall complexity of fucose metabolism is greater in Metazoa than in Fungi. Massive gene loss has shaped the evolutionary history of these metabolic pathways, leading to a repeated reduction of these pathways in most yeast-forming lineages. Our results point to a distinctive mode of utilization of fucose among fungi belonging to Dikarya and the early diverging lineages. We speculate that, while Dikarya used fucose as a source of nutrients for metabolism, the early diverging group of fungi depended on fucose as a building block and signaling compound.

16.
IMA Fungus ; 14(1): 22, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932857

RESUMO

Mucoromycota is a phylum of early diverging fungal (EDF) lineages, of mostly plant-associated terrestrial fungi. Some strains have been selected as promising biotechnological organisms due to their ability to produce polyunsaturated fatty acids and efficient conversion of nutrients into lipids. Others get their lipids from the host plant and are unable to produce even the essential ones on their own. Following the advancement in EDF genome sequencing, we carried out a systematic survey of lipid metabolism protein families across different EDF lineages. This enabled us to explore the genomic basis of the previously documented ability to produce several types of lipids within the fungal tree of life. The core lipid metabolism genes showed no significant diversity in distribution, however specialized lipid metabolic pathways differed in this regard among different fungal lineages. In total 165 out of 202 genes involved in lipid metabolism were present in all tested fungal lineages, while remaining 37 genes were found to be absent in some of fungal lineages. Duplications were observed for 69 genes. For the first time we demonstrate that ergosterol is not being produced by several independent groups of plant-associated fungi due to the losses of different ERG genes. Instead, they possess an ancestral pathway leading to the synthesis of cholesterol, which is absent in other fungal lineages. The lack of diacylglycerol kinase in both Mortierellomycotina and Blastocladiomycota opens the question on sterol equilibrium regulation in these organisms. Early diverging fungi retained most of beta oxidation components common with animals including Nudt7, Nudt12 and Nudt19 pointing at peroxisome divergence in Dikarya. Finally, Glomeromycotina and Mortierellomycotina representatives have a similar set of desaturases and elongases related to the synthesis of complex, polyunsaturated fatty acids pointing at an ancient expansion of fatty acid metabolism currently being explored by biotechnological studies.

17.
Environ Entomol ; 52(6): 1162-1171, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37823556

RESUMO

Agricultural insect herbivores show a remarkable ability to adapt to modern agroecosystems, making them ideal for the study of the mechanisms underlying rapid evolution. The mobilization of transposable elements is one mechanism that may help explain this ability. The Colorado potato beetle, Leptinotarsa decemlineata, is a highly adaptable species, as shown by its wide host range, broad geographic distribution, and tolerance to insecticides. However, beetle populations vary in insecticide tolerance, with Eastern US beetle populations being more adaptable than Western US ones. Here, we use a community ecology approach to examine how the abundance and diversity of transposable elements differs in 88 resequenced genomes of L. decemlineata collected throughout North America. We tested if assemblages and mobilization of transposable elements differed between populations of L. decemlineata based on the beetle's geography, host plant, and neonicotinoid insecticide resistance. Among populations of North American L. decemlineata, individuals collected in Mexico host more transposable elements than individuals collected in the United States. Transposable element insertion locations differ among geographic populations, reflecting the evolutionary history of this species. Total transposable element diversity between L. decemlineata individuals is enough to distinguish between populations, with more TEs found in beetles collected in Mexico than in the United States. Transposable element diversity does not appear to differ between beetles found on different host plants, or relate to different levels of insecticide resistance.


Assuntos
Besouros , Inseticidas , Solanum tuberosum , Animais , Besouros/genética , Elementos de DNA Transponíveis , Inseticidas/farmacologia , Neonicotinoides , Resistência a Inseticidas/genética
18.
Microorganisms ; 11(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513002

RESUMO

The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades-primarily plant-associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions.

19.
Mol Biol Evol ; 28(12): 3395-404, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21727238

RESUMO

Many socially important fungi encode an elevated number of subtilisin-like serine proteases, which have been shown to be involved in fungal mutualisms with grasses and in parasitism of insects, nematodes, plants, other fungi, and mammalian skin. These proteins have endopeptidase activities and constitute a significant part of fungal secretomes. Here, we use comparative genomics to investigate the relationship between the quality and quantity of serine proteases and the ability of fungi to cause disease in invertebrate and vertebrate animals. Our screen of previously unexamined fungi allowed us to annotate and identify nearly 1000 subtilisin-containing proteins and to describe six new categories of serine proteases. Architectures of predicted proteases reveal novel combinations of subtilisin domains with other, co-occurring domains. Phylogenetic analysis of the most common clade of fungal proteases, proteinase K, showed that gene family size changed independently in fungi, pathogenic to invertebrates (Hypocreales) and vertebrates (Onygenales). Interestingly, simultaneous expansions in the S8 and S53 families of subtilases in a single fungal species are rare. Our analysis finds that closely related systemic human pathogens may not show the same gene family expansions, and that related pathogens and nonpathogens may show the same type of gene family expansion. Therefore, the number of proteases does not appear to relate to pathogenicity. Instead, we hypothesize that the number of fungal serine proteases in a species is related to the use of the animal as a food source, whether it is dead or alive.


Assuntos
Fungos/enzimologia , Fungos/genética , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/metabolismo , Subtilisinas/química , Subtilisinas/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Fungos/patogenicidade , Humanos , Onygenales/enzimologia , Onygenales/genética , Filogenia , Estrutura Terciária de Proteína , Subtilisinas/metabolismo
20.
Genome Res ; 19(10): 1722-31, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19717792

RESUMO

While most Ascomycetes tend to associate principally with plants, the dimorphic fungi Coccidioides immitis and Coccidioides posadasii are primary pathogens of immunocompetent mammals, including humans. Infection results from environmental exposure to Coccidiodies, which is believed to grow as a soil saprophyte in arid deserts. To investigate hypotheses about the life history and evolution of Coccidioides, the genomes of several Onygenales, including C. immitis and C. posadasii; a close, nonpathogenic relative, Uncinocarpus reesii; and a more diverged pathogenic fungus, Histoplasma capsulatum, were sequenced and compared with those of 13 more distantly related Ascomycetes. This analysis identified increases and decreases in gene family size associated with a host/substrate shift from plants to animals in the Onygenales. In addition, comparison among Onygenales genomes revealed evolutionary changes in Coccidioides that may underlie its infectious phenotype, the identification of which may facilitate improved treatment and prevention of coccidioidomycosis. Overall, the results suggest that Coccidioides species are not soil saprophytes, but that they have evolved to remain associated with their dead animal hosts in soil, and that Coccidioides metabolism genes, membrane-related proteins, and putatively antigenic compounds have evolved in response to interaction with an animal host.


Assuntos
Coccidioides/genética , Genoma Fúngico , Fungos Mitospóricos/genética , Animais , Especiação Genética , Genômica/métodos , Histoplasma/genética , Humanos , Dados de Sequência Molecular , Onygenales/genética , Filogenia , Seleção Genética , Análise de Sequência de DNA , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA