RESUMO
PURPOSE: Common Lymphatic Endothelial and Vascular Endothelial Receptor 1 (Clever-1) is expressed by a subset of immunosuppressive macrophages and targeting the receptor with therapeutic antibodies has been shown to activate T-cell-mediated anti-cancer immunity. The aim of this research was to study Clever-1 expression in breast cancer. Specifically, how Clever-1 + macrophages correlate with clinicopathologic factors, Tumor Infiltrating Lymphocytes (TILs) and prognosis. METHODS: Tissue microarray blocks were made from 373 primary breast cancer operation specimens. Hematoxylin and Eosin (H&E-staining) and immunohistochemical staining with Clever-1, CD3, CD4 and CD8 antibodies were performed. Differences in quantities of Clever-1 + macrophages and TILs were analyzed. Clever-1 + cell numbers were correlated with 25-year follow-up survival data and with breast cancer clinicopathologic parameters. RESULTS: Low numbers of intratumoral Clever-1 + cells were found to be an independent adverse prognostic sign. Increased numbers of Clever-1 + cells were found in high grade tumors and hormone receptor negative tumors. Tumors that had higher amounts of Clever-1 + cells also tended to have higher amounts of TILs. CONCLUSION: The association of intratumoral Clever-1 + macrophages with better prognosis might stem from the function of Clever as a scavenger receptor that modulates tumor stroma. The association of Clever-1 + macrophages with high number of TILs and better prognosis indicates that immunosuppression by M2 macrophages is not necessarily dampening adaptive immune responses but instead keeping them in control to avoid excess inflammation.
Assuntos
Neoplasias da Mama , Vasos Linfáticos , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Humanos , Vasos Linfáticos/patologia , Linfócitos do Interstício Tumoral , Macrófagos/patologia , PrognósticoRESUMO
BACKGROUND: Combining cytotoxic chemotherapy or novel anticancer drugs with T-cell modulators holds great promise in treating advanced cancers. However, the response varies depending on the tumor immune microenvironment (TIME). Therefore, there is a clear need for pharmacologically tractable models of the TIME to dissect its influence on mono- and combination treatment response at the individual level. METHODS: Here we establish a patient-derived explant culture (PDEC) model of breast cancer, which retains the immune contexture of the primary tumor, recapitulating cytokine profiles and CD8+T cell cytotoxic activity. RESULTS: We explored the immunomodulatory action of a synthetic lethal BCL2 inhibitor venetoclax+metformin drug combination ex vivo, discovering metformin cannot overcome the lymphocyte-depleting action of venetoclax. Instead, metformin promotes dendritic cell maturation through inhibition of mitochondrial complex I, increasing their capacity to co-stimulate CD4+T cells and thus facilitating antitumor immunity. CONCLUSIONS: Our results establish PDECs as a feasible model to identify immunomodulatory functions of anticancer drugs in the context of patient-specific TIME.
Assuntos
Antineoplásicos , Neoplasias da Mama , Compostos Bicíclicos Heterocíclicos com Pontes , Metformina , Sulfonamidas , Humanos , Feminino , Complexo I de Transporte de Elétrons/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Dendríticas , Metformina/farmacologia , Metformina/uso terapêutico , Microambiente TumoralRESUMO
BACKGROUND: Much is known about tumor infiltrating lymphocytes (Tils) in primary breast cancer, as this has been the focus of much research in recent years, but regarding recurrent breast cancer, only few studies have been done. Our aim was to compare the quantities of Tils in primary breast carcinomas and their corresponding recurrences and to analyze the differences in the tumor Tils compositions in correlations with recurrence-free times and the clinicopathology of the tumor. METHODS: One hundred thirty-seven breast cancer patients self-paired for primary- tumor-recurrence were divided into three groups based on the length of the recurrence-free interval. H&E-staining and immunohistochemical staining with antiCD3, antiCD4, antiCD8 and antiCD56 were performed. Differences in Tils between primaries and recurrences, between the recurrence-free interval groups, and between different clinicopathologic parameters were statistically analyzed. RESULTS: Fewer stromal CD3+, CD8+ and CD56+ lymphocytes were found at recurrences compared to the primaries. No significant change in the percentage of CD4+ stromal lymphocytes. ER-negative primaries, PR-negative or HER2-positive tumors had more Tils in some subgroups. Ductal primaries had more Tils than lobular primaries and G3 tumors had more Tils than lower-grade tumors. The corresponding differences at recurrences could either not be detected or they were reversed. The fastest recurring group had generally more Tils than the slower groups. CONCLUSIONS: CD4+ cell numbers did not decline from primary to recurrence in contrast to all other subclasses of lymphocytes. The proportion of CD4+ cells was higher in recurrences than in primaries. Tumors with a higher grade and proliferation rate had higher percentages of Tils. HER2+ and hormone receptor negative tumors tended to have higher Tils scores. In recurrences these differences were not seen or they were reversed.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Recidiva Local de Neoplasia/patologia , Linfócitos T CD4-Positivos/patologia , Linfócitos do Interstício Tumoral/patologia , Linfócitos T CD8-Positivos/patologia , PrognósticoRESUMO
Core needle biopsies (CNB) are widely used to diagnose breast cancer, but the procedure is invasive and thus, it changes the tumor microenvironment. The purpose of this study is to see how the expression of three potentially anti-inflammatory molecules, namely, programmed death-ligand 1 (PD-L1), sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15), and C-C chemokine receptor-5 (CCR-5), are expressed in CNB and surgical resection specimens (SRS). To do this, we compared the amounts of tumor-infiltrating lymphocytes and the levels of CCR5, Siglec-15, and PD-L1 in tumor cells and inflammatory cells as assessed by immunohistochemistry in CNB and the corresponding SRS of 22 invasive breast carcinomas of no special type and 22 invasive lobular carcinomas. The Siglec-15 H-score was higher in tumor cells in the SRS than in the CNB groups. There was no change in tumor cells CCR5 or PD-L1 between CNB and SRS. The positive inflammatory cell numbers for all markers rose between CNB and SRS, as did the amount of Tils. Furthermore, higher grade tumors and tumors with a high proliferation rate had more inflammatory cells that were positive for the markers and also more PD-L1+ tumor cells. Although changes in inflammatory cells can partly be attributed to the larger sample size of operation specimens, the differences also mirror a true change in the tumor microenvironment. The changes in inflammatory cells could be partly due to the need to restrict excess inflammation at the site of the biopsy.
Assuntos
Antígeno B7-H1 , Neoplasias da Mama , Humanos , Feminino , Antígeno B7-H1/metabolismo , Biópsia com Agulha de Grande Calibre , Neoplasias da Mama/patologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Linfócitos do Interstício Tumoral/patologia , Microambiente Tumoral , Receptores CCR5/metabolismoRESUMO
Breast cancer is now globally the most frequent cancer and leading cause of women's death. Two thirds of breast cancers express the luminal estrogen receptor-positive (ERα + ) phenotype that is initially responsive to antihormonal therapies, but drug resistance emerges. A major barrier to the understanding of the ERα-pathway biology and therapeutic discoveries is the restricted repertoire of luminal ERα + breast cancer models. The ERα + phenotype is not stable in cultured cells for reasons not fully understood. We examine 400 patient-derived breast epithelial and breast cancer explant cultures (PDECs) grown in various three-dimensional matrix scaffolds, finding that ERα is primarily regulated by the matrix stiffness. Matrix stiffness upregulates the ERα signaling via stress-mediated p38 activation and H3K27me3-mediated epigenetic regulation. The finding that the matrix stiffness is a central cue to the ERα phenotype reveals a mechanobiological component in breast tissue hormonal signaling and enables the development of novel therapeutic interventions. Subject terms: ER-positive (ER + ), breast cancer, ex vivo model, preclinical model, PDEC, stiffness, p38 SAPK.