RESUMO
Optically active functional noncentrosymmetric architectures might be achieved through the combination of molecules with inscribed optical responses and species of dedicated tectonic character. Herein, we present the new series of noncentrosymmetric cocrystal salt solvates (PPh4)3[M(CN)6](L)n·msolv (M = Cr(III), Fe(III), Co(III); L = polyresorcinol coformers, multiple hydrogen bond donors: 3,3',5,5'-tetrahydroxy-1,19-biphenyl, DiR, n = 2, or 5'-(3,5-dihydroxyphenyl)-3,3â³,5,5â³-tetrahydroxy-1,19:3',1â³-terphenyl, TriRB, n = 1) denoted as MDiR and MTriRB, respectively. The hydrogen-bonded subnetworks {[M(CN)6]3-;Ln}∞ of dmp, neb, or dia topology are formed through structural matching between building blocks within supramolecular cis-bis(chelate)-like {[M(CN)6]3-;(H2L)2(HL)2} or tris(chelate)-like {[M(CN)6]3-;(H2L)3} fragments. The quantum-chemical analysis demonstrates the mixed electrostatic and covalent character of these interactions, with their strength clearly enhanced due to the negative charge of the hydrogen bond acceptor metal complex. The corresponding interaction energy is also dependent on the geometry of the contact and size matching of its components, rotational degree of freedom and extent of the π-electron system of the coformer, and overall fit to the molecular surroundings. Symmetry of the crystal lattices is correlated with the local symmetry of coformers and {complex;(coformer)n} hydrogen-bonded motifs characterized by the absence of the inversion center and mirror plane. All compounds reveal second-harmonic generation activity and photoluminescence diversified by individual UV-vis spectral characteristics of the components, and interesting low-frequency Raman scattering spectra within the subterahertz spectroscopic domain. Vibrational (infrared/Raman), UV-vis electronic absorption (experimental and calculated), and 57Fe Mössbauer spectra together with electrospray ionization mass spectrometry (ESI-MS) data are provided for the complete description of our systems.
RESUMO
Paracetamol is an important analgesic and antipyretic drug showing poor tabletability. Among the various approaches used to improve this property, understanding the forces that govern the crystal packing is revealed to be crucial. We prepared three stable compounds: (par)2â(nap) (1), (par)â(quin) (2), and (par)â(acr) (3) (nap-naphthalene, quin-quinoline, acr-acridine) being cocrystals or solvate. The structural studies showed that all the reported compounds are composed of alternately arranged layers of paracetamol and coformer. Several supramolecular motifs in the paracetamol layer were identified: R44(22) in (1); R64(20) and R22(8) in (2); and R22(8), R42(12), and R44(26) rings in (3). The stability of the crystal network was studied by interactions analysis performed by Hirshfeld surface and fingerprint approaches and the energy between the closest units in the crystal network was calculated. It showed that the strongest interactions were found between blocks connected by N-Hâ¯O=C and O-Hâ¯O/N hydrogen bonds due to an important coulombic factor. The dispersive energy becomes important for tail-to-tail (and head-to-tail) arranged paracetamol units, and it prevails in the case of stacking interactions between coformer molecules. The importance of dispersive forces increases with the size of the aromatic system of the coformer. XAS studies confirmed the successful preparation of compounds and provided some details about electron structure.
RESUMO
Two dinuclear copper(II) complexes with macrocyclic Schiff bases K1 and K2 were prepared by the template reaction of (R)-(+)-1,1'-binaphthalene-2,2'-diamine and 2-hydroxy-5-methyl-1,3-benzenedicarboxaldehyde K1, or 4-tert-butyl-2,6-diformylphenol K2 with copper(II) chloride dihydrate. The compounds were characterized by spectroscopic methods. X-ray crystal structure determination and DFT calculations confirmed their geometry in solution and in the solid phase. Moreover, intermolecular interactions in the crystal structure of K2 were analyzed using 3D Hirshfeld surfaces and the related 2D fingerprint plots. The magnetic study revealed very strong antiferromagnetic CuII-CuII exchange interactions, which were supported by magneto-structural correlation and DFT calculations conducted within a broken symmetry (BS) framework. Complexes K1 and K2 exhibited luminescent properties that may be of great importance in the search for new OLEDs. Both K1 and K2 complexes showed emissions in the range of 392-424 nm in solutions at various polarities. Thin materials of the studied compounds were deposited on Si(111) by the spin-coating method or by thermal vapor deposition and studied by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM), and fluorescence spectroscopy. The thermally deposited K1 and K2 materials showed high fluorescence intensity in the range of 318-531 nm for K1/Si and 326-472 nm for the K2/Si material, indicating that they could be used in optical devices.
Assuntos
Cobre , Magnetismo , Modelos Moleculares , Cobre/química , Bases de Schiff/química , Corantes , Fenômenos Magnéticos , Cristalografia por Raios XRESUMO
The synthesis and investigation of the physicochemical properties of a novel one-dimensional (1D) hybrid organic-inorganic perovskitoid templated by the 1,1,1-trimethylhydrazinium (Me3Hy+) cation are reported. (Me3Hy)[PbI3] crystallizes in the hexagonal P63/m symmetry and undergoes two phase transitions (PTs) during heating (cooling) at 322 (320) and 207 (202) K. X-ray diffraction data and temperature-dependent vibrational studies show that the second-order PT to the high-temperature hexagonal P63/mmc phase is associated with a weak change in entropy and is related to weak structural changes and different confinement of cations in the available space. The second PT to the low-temperature orthorhombic Pbca phase that corresponds to the high change in entropy and dielectric switching is associated with an ordering of the trimethylhydrazinium cations, re-arrangement and strengthening of hydrogen bonds, and slightly shifted lead-iodide octahedral chains. The high-pressure Raman data revealed two additional PTs, one between 2.8 and 3.2 GPa, related to the symmetry decrease, ordering of the cations, and inorganic chain distortion, and the other in the 6.4-6.8 GPa range related to the partial and reversible amorphization. Optical studies revealed that (Me3Hy)[PbI3] has a wide band gap (3.20 eV) and emits reddish-orange excitonic emission at low temperatures with an activation energy of 65 meV.
RESUMO
Two macrocyclic Schiff bases derived from o-phenylenediamine and 2-hydroxy-5-methylisophthalaldehyde L1 or 2-hydroxy-5-tert-butyl-1,3-benzenedicarboxaldehyde L2, respectively, were obtained and characterized by X-ray crystallography and spectroscopy (UV-vis, fluorescence and IR). X-ray crystal structure determination and DFT calculations for compounds confirmed their geometry in solution and in the solid phase. Moreover, intermolecular interactions in the crystal structure of L1 and L2 were analyzed using 3D Hirshfeld surfaces and the related 2D fingerprint plots. The 3D Hirschfeld analyses show that the most numerous interactions were found between hydrogen atoms. A considerable number of such interactions are justified by the presence of bulk tert-butyl groups in L2. The luminescence of L1 and L2 in various solvents and in the solid state was studied. In general, the quantum efficiency between 0.14 and 0.70 was noted. The increase in the quantum efficiency with the solvent polarity in the case of L1 was observed (λex = 350 nm). For L2, this trend is similar, except for the chloroform. In the solid state, emission was registered at 552 nm and 561 nm (λex = 350 nm) for L1 and L2, respectively. Thin layers of the studied compounds were deposited on Si(111) by the spin coating method or by thermal vapor deposition and studied by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM), spectroscopic ellipsometry and fluorescence spectroscopy. The ellipsometric analysis of thin materials obtained by thermal vapor deposition showed that the band-gap energy was 3.45 ± 0.02 eV (359 ± 2 nm) and 3.29 ± 0.02 eV (377 ± 2 nm) for L1/Si and L2/Si samples, respectively. Furthermore, the materials of the L1/Si and L2/Si exhibited broad emission. This feature can allow for using these compounds in LED diodes.
Assuntos
Fenilenodiaminas , Bases de Schiff , Bases de Schiff/química , Cristalografia por Raios X , Modelos Teóricos , Solventes/químicaRESUMO
Studies on molecular co-crystal type materials are important in the design and preparation of easy-to-absorb drugs, non-centrosymmetric, and chiral crystals for optical performance, liquid crystals, or plastic phases. From a fundamental point of view, such studies also provide useful information on various supramolecular synthons and molecular ordering, including metric parameters, molecular matching, energetical hierarchy, and combinatorial potential, appealing to the rational design of functional materials through structure-properties-application schemes. Co-crystal salts involving anionic d-metallate coordination complexes are moderately explored (compared to the generality of co-crystals), and in this context, we present a new series of isomorphous co-crystalline salts (PPh4)3[M(CN)6](H3PG)2·2MeCN (M = Cr, 1; Fe, 2; Co 3; H3PG = phloroglucinol, 1,3,5-trihydroxobenzene). In this study, 1-3 were characterized experimentally using SC XRD, Hirshfeld analysis, ESI-MS spectrometry, vibrational IR and Raman, 57Fe Mössbauer, electronic absorption UV-Vis-NIR, and photoluminescence spectroscopies, and theoretically with density functional theory calculations. The two-dimensional square grid-like hydrogen-bond {[M(CN)6]3-;(H3PG)2}∞ network features original {[M(CN)6]3-;(H3PG)4} supramolecular cis-bis(chelate) motifs involving: (i) two double cyclic hydrogen bond synthons M(-CNâ â â HO-)2Ar, {[M(CN)6]3-;H2PGH}, between cis-oriented cyanido ligands of [M(CN)6]3- and resorcinol-like face of H3PG, and (ii) two single hydrogen bonds M-CNâ â â HO-Ar, {[M(CN)6]3-;HPGH2}, involving the remaining two cyanide ligands. The occurrence of the above tectonic motif is discussed with regard to the relevant data existing in the CCDC database, including the multisite H-bond binding of [M(CN)6]3- by organic species, mononuclear coordination complexes, and polynuclear complexes. The physicochemical and computational characterization discloses notable spectral modifications under the regime of an extended hydrogen bond network.
Assuntos
Complexos de Coordenação , Complexos de Coordenação/química , Cristalografia por Raios X , Compostos Férricos , Floroglucinol , SaisRESUMO
An original example of modular crystal engineering involving molecular magnetic {CuII[WV(CN)8]}- bilayers and adeninium cations (AdeH+) toward the new layered molecular magnet (AdeH){CuII[WV(CN)8]}·2H2O (1) is presented. 1 crystallizes within the monoclinic C2 space group (a = 41.3174(12), b = 7.0727(3), c = 7.3180(2) Å, ß = 93.119(3)°, and V = 2135 Å3). The bilayer topology is based on a stereochemical matching between the square pyramidal shape of CuII moiety and the bicapped trigonal prismatic shape of [WV(µ-CN)5(CN)3], and the separation between bilayers is significantly increased (by â¼50%; from ca. 9.5 to ca. 14.5 Å) compared to several former analogues in this family. This was achieved via a unique combination of (i) a 1D ribbonlike hydrogen bond system {AdeH+···H2O···AdeH+···}∞ exploiting planar water-assisted Hoogsteen···Sugar synthons with (ii) parallel 1D π-π stacks {AdeH+···AdeH+}∞. In-plane 2D XY magnetism is characterized by a Tc close to 33 K, Hc,in-plane = 60 Oe, and Hc,out-of-plane = 750 Oe, high values of in-plane γ critical exponents (γb = 2.34(6) for H||b and γc = 2.16(5) for H||c), and a Berezinskii-Kosterlitz-Thouless (BKT) topological phase transition, deduced from crystal-orientation-dependent scaling analysis. The obtained values of in-plane ν critical exponents, νb = 0.48(5) for H||b and νc = 0.49(3) for H||c, confirm the BKT transition (νBKT = 0.5). Full-range angle-resolved monocrystalline magnetic measurements supported by dedicated calculations indicated the occurrence of nonlinear susceptibility performance within the easy plane in a magnetically ordered state. We refer the occurrence of this phenomenon to spontaneous resolution in the C2 space group, a tandem not observed in studies on previous analogues and rarely reported in the field of molecular materials. The above magneto-supramolecular strategy may provide a novel means for the design of 2D molecular magnetic networks and help to uncover the inherent phenomena.
Assuntos
Adenina/química , Fenômenos Magnéticos , Compostos Organometálicos/química , Cobre/química , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Conformação MolecularRESUMO
Two Cu(II) complexes, 1 and 2, with tridentate Schiff bases derived from 2-hydroxy-5-methylisophthalaldehyde and histamine HL1 or 2-(2-aminoethyl)pyridine HL2, respectively, were obtained and characterized by X-ray crystallography, spectroscopic (UV-vis, fluorescence, IR, and EPR), magnetic, and thermal methods. Despite the fact that the chelate formed by the NNO ligand donors (C26-C25H2-C24H2-N23=C23H-C22-C19Ph(O1)-C2(Ph)-C3H=N3-C4H2-C5H2-C6 fragment) are identical, as well as the synthesis of Cu(II) complexes (Cu:L = 2:1 molar ratio) was performed in the same manner, the structures of the complexes differ significantly. The complex 1, {[Cu2(L1)Cl2]2[CuCl4]}·2MeCN·2H2O, consists of [Cu2(L1)Cl2]+ units in which Cu(II) ions are bridged by the HL1 ligand oxygen and each of these Cu(II) ions is connected with Cu(II) ions of the next dimeric unit via two bridging Cl- ions to form a chain structure. In the dinuclear [Cu2(L2)Cl3]0.5MeCN complex 2, each Cu(II) is asymmetrically bridged by the ligand oxygen and chloride anions, whereas the remaining chloride anions are apically bound to Cu(II) cations. In contrast to the complex 1, the square-pyramidal geometry of the both Cu(II) centers is strongly distorted. The magnetic study revealed that antiferromagnetic interactions in the complex 2 are much stronger than in the complex 1, which was corresponded with magneto-structural examination. Thin layers of the studied Cu(II) complexes were deposited on Si(111) by the spin coating method and studied by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM), and fluorescence spectroscopy. The Cu(II) complexes and their thin layers exhibited fluorescence between 489-509 nm and 460-464 nm for the compounds and the layers, respectively. Additionally, DFT calculations were performed to explain the structures and electronic spectral properties of the ligands.
Assuntos
Cobre/química , Fluorescência , Histamina/química , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Piridinas/química , Bases de Schiff/química , Cristalografia por Raios X , Ligantes , Fenômenos Magnéticos , Modelos MolecularesRESUMO
Dispersed silver nanoparticles (AgNPs) on the surface of titanium alloy (Ti6Al4V) and titanium alloy modified by titania nanotube layer (Ti6Al4V/TNT) substrates were produced by the chemical vapor deposition method (CVD) using a novel precursor of the formula [Ag5(O2CC2F5)5(H2O)3]. The structure and volatile properties of this compound were determined using single crystal X-ray diffractometry, variable temperature IR spectrophotometry (VT IR), and electron inducted mass spectrometry (EI MS). The morphology and the structure of the produced Ti6Al4V/AgNPs and Ti6Al4V/TNT/AgNPs composites were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Moreover, measurements of hardness, Young's modulus, adhesion, wettability, and surface free energy have been carried out. The ability to release silver ions from the surface of produced nanocomposite materials immersed in phosphate-buffered saline (PBS) solution has been estimated using inductively coupled plasma mass spectrometry (ICP-MS). The results of our studies proved the usefulness of the CVD method to enrich of the Ti6Al4V/TNT system with silver nanoparticles. Among the studied surface-modified titanium alloy implants, the better nano-mechanical properties were noticed for the Ti6Al4V/TNT/AgNPs composite in comparison to systems non-enriched by AgNPs. The location of silver nanoparticles inside of titania nanotubes caused their lowest release rate, which may indicate suitable properties on the above-mentioned type of the composite for the construction of implants with a long term antimicrobial activity.
Assuntos
Fenômenos Mecânicos , Próteses e Implantes , Prata/química , Titânio/química , Adesividade , Ligas , Líquidos Corporais/química , Materiais Revestidos Biocompatíveis/química , Módulo de Elasticidade , Dureza , Íons , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Microscopia de Força Atômica , Conformação Molecular , Espectrometria por Raios X , Espectrofotometria Infravermelho , TermodinâmicaRESUMO
3 + 3 optically active macrocyclic Schiff bases were synthesized in the reaction between 4-tert-butyl-2,6-diformylphenol with (1R,2R)-(+)-1,2-diphenylethylenediamine (S1) or (1S,2S)-(-)-1,2-diphenylethylenediamine (S1a). The new compounds were spectroscopically characterised by NMR, IR, X-ray (S1a), UV-Vis and fluorescence spectroscopy. The S1a molecule creates channels with distances between oxygen atoms ranging from 5.8-6.3 Å and sufficiently large to host acetonitrile molecule. Both compounds exhibit green-yellow emission in solution and solid state. Thin layers of the S1 compound obtained via Molecular Beam Epitaxy (MBE) were characterised by scanning electron microscopy with energy-dispersive X-ray spectroscopy SEM/EDS and atomic force microscopy (AFM). The optical properties of the S1/Si thin material were analysed using spectroscopic ellipsometry (SE), fluorescence spectroscopy and synchrotron radiation (SR). The time constant for the decay investigated under SR, denoted by τ1, was determined to be approximately 1.02 ns, suggesting a fast deactivation process of the excited electronic state in the S1/Si material. The ellipsometric analysis of the S1/Si layer showed semiconducting behaviour with pronounced absorption features in the UV range, attributed to π â π* and n â π* transitions, characteristic of Schiff bases. The band-gap energy, determined using the Tauc method, is 3.46 ± 0.01 eV. These analyses highlight the material's potential in applications requiring precise control of optical properties. In the emission spectrum of S1a, a significant emission peak of approximately 561 nm indicates the presence of a prominent emissive process within this wavelength. The S1a compound is emissive in the yellow-green region of the spectrum and has a longer decay time, which suggests that it can be used in sensing optical technologies.
RESUMO
A 2D cyanido-bridged architecture ZnII-[WV(CN)8]3- is smoothly pillared by N,N'-di-(4-pyridyl)-1,4,5,8-naphthalenetetracarboxydiimide (4DPNDI) into 3D hybrid porous coordination polymer (PCP) {ZnII3(DMA)6[WV(CN)8]2(4DPNDI)·8DMA}. It shows significant uptake of H2O, MeOH or CHCl3 vapours with easy regeneration to the native form, and breathing-type CO2 adsorption contrasting non-porosity towards N2, providing a new example of a highly flexible porous material.
RESUMO
The new heterometallic compounds, [{Cu(pn)2}2Ni(NCS)6]n·2nH2O (1), [{CuII(trien)}2Ni(NCS)6CuI(NCS)]n (2) and [Cu(tren)(NCS)]4[Ni(NCS)6] (3) (pn = 1,2-diaminopropane, trien = triethylenetetramine and tren = tris(2-aminoethylo)amine), were obtained and characterized by X-ray analysis, IR spectra, XAS and magnetic measurements. Compounds 1, 2 and 3 show the structural diversity of 2D, 1D and 0D compounds, respectively. Depending on the polyamine used, different coordination polyhedron for Cu(II) was found, i.e., distorted octahedral (1), square pyramidal (2) and trigonal bipyramidal (3), whereas coordination polyhedron for nickel(II) was always octahedral. It provides an approach for tailoring magnetic properties by proper selection of auxiliary ligands determining the topology. In 1, thiocyanate ligands form bridges between the copper and nickel ions, creating 2D layers of sql topology with weak ferromagnetic interactions. Compound 2 is a mixed-valence copper coordination polymer and shows the rare ladder topology of 1D chains decorated with [CuII(tren)]2+ antennas as the side chains attached to nickel(II). The ladder rails are formed by alternately arranged Ni(II) and Cu(I) ions connected by N2 thiocyanate anions and rungs made by N3 thiocyanate. For the Cu(I) ions, the tetrahedral thiocyanate environment mixed N/S donor atoms was found, confirming significant coordination spheres rearrangement occurring at the copper precursor together with the reduction in some Cu(II) to Cu(I). Such topology enables significant simplification of the magnetic properties modeling by assuming magnetic coupling inside {NiIICuII2} trinuclear units separated by diamagnetic [Cu(NCS)(SCN)3]3- linkers. Compound 3 shows three discrete mononuclear units connected by N-H N and N-H S hydrogen bonds. Analysis of XAS proves that the average ligand character and the covalency of the unoccupied metal d-based orbitals for copper(II) and nickel(II) increase in the following order: 1 â 2 â 3. In 1 and 2, a weak ferromagnetic coupling between copper(II) and nickel(II) was found, but in 2, additional and stronger antiferromagnetic interaction between copper(II) ions prevailed. Compound 3, as an ionic pair, shows, as expected, a spin-only magnetic moment.
RESUMO
The procedures of putrescine, spermine, spermidine, and cadaverine derivatization using 2-chloro-1,3-dinitro-5-(trifluoromethyl)benzene, 1-fluoro-2-nitro-4-(trifluoromethyl) benzene, and 3,5-bis-(trifluoromethyl)phenyl isothiocyanate for chromatographic determination in home-made wine samples are compared in the present study. The procedures discussed were compared regarding simplicity, linearity, precision, and accuracy. The polyamines derivatives were isolated and characterized by X-ray crystallography and 1H, 13C, and 19F NMR spectroscopy. The obtained structures of aliphatic amines showed that all amino groups, four in spermine, two in putrescine and cadaverine, and three in spermidine, regardless of the applied reagent, were substituted. The applicability of the described procedures was tested during the chromatographic analysis of the compounds' content in home-made wines. For this purpose, a simple and environmentally friendly sample preparation procedure was developed. The obtained results present the derivatization of polyamines with 1-fluoro-2-nitro-4-(trifluoromethyl)benzene as a better choice for the determination of these compounds in food samples.
RESUMO
A novel synthetic method for enantioselective C2-functionalization of 3-hydroxychromenones promoted by N-heterocyclic carbenes via the formation of α,ß-unsaturated acyl azolium intermediates, which occurs with Coates-Claisen rearrangement is established. This synthetic strategy enabled the rapid assembly of enantiomerically enriched δ-hydroxychromenone-derived esters/amides under mild conditions with good to excellent yields and broad substrate scope.
RESUMO
Two Zn(ii) complexes, K1 and K2, obtained from the template reaction of zinc(ii) acetate dihydrate with o-phenylenediamine and 2-hydroxy-5-methylisophthalaldehyde (K1) or 2-hydroxy-5-tert-butyl-1,3-benzenedicarboxaldehyde (K2), respectively, were characterized by X-ray crystallography, spectroscopic (UV-vis, fluorescence and IR), and thermal methods. In the complex [Zn2(MeO)1.4(OH)0.6(L1)]·2H2O K1, there are two binding sites in the macrocyclic ligand and they are occupied by zinc(ii) cations found in slightly distorted square pyramidal environment. The zinc(ii) cations are connected by slightly asymmetric oxo bridges with a Zn1-O14-Zn1[-x, -y + 1, -z + 1] angle of 104.8(2)°. In the dimer [Zn2(CH3COO)2(L2)]·2EtOH K2, there are two crystallographically independent binding sites both occupied by zinc(ii) cations. There is a significant difference between both complexes, since in K1 only one site is independent and the second is occupied due to the application of symmetry rules, and the geometry of both sites is identical. Thin layers of the obtained Zn(ii) complexes were deposited on Si(111) by the spin coating method and studied by scanning electron microscopy (SEM/EDS), atomic force microscopy (AFM), fluorescence spectroscopy and ellipsometry. In the non-absorbing range, the value of the refractive index exhibits normal dispersion between 1.8 and 2.1 for K1_1-K1_3; and between 2.3 and 2.6 for the K2 series of samples established for long wavelengths (longer than 500 nm). The Zn(ii) complexes and their thin layers exhibited fluorescence between 534-573 nm and 495-572 nm for the compounds and the layers, respectively. The highest quantum yield of fluorescence was achieved for K2 in benzene and in the solid state Ï = 0.78 and 0.58, respectively. The influence of the solvent polarity on the fluorescence properties of the obtained complexes was studied. Additionally, DFT calculations were performed to explain the structures and electronic spectral properties of the complexes.
RESUMO
The interest in titanium (IV) oxo-complexes is due to their potential application in photodegradation processes and environmental pollutants reduction. Titanium (IV) oxo-complexes (TOCs) of the general formula [Ti3O(OiPr)8(OOCR')2] (R' = -C13H9 (1), -p-PhCl (2), -m-PhNO2 (3), -C4H7 (4)) were synthesized and structurally characterized. The use of the different carboxylate ligands allowed modulating the optical band gaps of the produced microcrystals, which were measured via diffuse reflectance ultraviolet and visible spectroscopy (UV-Vis-DRS) and calculated using the density functional theory (DFT) method. The dispersion of TOCs (1-3) in the poly (methyl methacrylate) matrix (PMMA) led to the formation of polymer/TOCs composites, which in the next stage of our works have been applied in the photocatalytic activity estimation of synthesized trinuclear Ti(IV) oxo-complexes. Studies of the photocatalytic degradation of methylene blue (MB) induced by UV irradiation exhibit that the PMMA-TOCs composite containing (1) oxo-clusters is the most active, followed by the system containing the complex (3).
RESUMO
Three new complexes forming a dynamic system and given by the following formulae: [Cu2(bpy)4Fe(ox)3]NO3·H2O 1, [Fe(bpy)3]2[Fe(ox)3]NO3·10H2O 2 and [Cu(bpy)3]2[Fe(ox)3]NO3·10H2O 3 (bpy - 2,2'-bipyridine, ox - oxalate), were synthesized from a methanol-water mixture or water, and characterized structurally, spectroscopically and magnetically. Compound 1 contains trinuclear [(bpy)2Cu(µ-ox)Fe(ox)(µ-ox)Cu(bpy)2]+ cations, while 2 and 3 can be classified as isomorphous ionic compounds, with alternately arranged hydrophobic and hydrophilic layers of mononuclear complex ions. The green crystals of 1 are perfectly stable in air, whereas in selected solvents they undergo irreversible solvent-assisted recrystallization towards red crystals of 2, which is also accompanied by the appearance of mononuclear blue copper complexes with oxalate, 2,2'-bipyridine and aqua ligands, already described in the literature. The above crystallization/recrystallization processes indicate variable solution contents. The whole effect is accelerated by both the increased temperature and day light irradiation, however, different products from the pool prevail under various conditions. The observed transformation can be understood in terms of thermodynamic and kinetic control, involving the known photo-activity of [Fe(ox)3]3- moieties and the effect of quadruple aryl embrace (QAE) on the stability of the crystal network. Considering the presence of FeIII-ox-CuII connectivity in 1 we performed detailed magnetic studies and theoretical calculations for this compound. Due to the strong asymmetry of Cu-O bonds the antiferromagnetic coupling is rather weak, with JCu-Fe being ca. -3.4 cm-1 (using Hamiltonian of the type H = -JCu-Fe(SCu1SFe + SFeSCu2) -JCu-Cu(SCu1SCu2)). We found that these values are very close to those predicted by B3LYP/6-311G* calculations.
RESUMO
Titanium(IV) oxo-clusters of the general formula (Ti4O2(OiBu)10(O2CR')2) (R' = C13H9 (1), PhCl (2), PhNO2 (3)) were studied in order to estimate their potential photoactivity. The structure of the resulting tetranuclear Ti(IV) oxo-complexes was then determined via single crystal X-ray diffraction, infrared and Raman spectroscopy, and electron spin resonance (ESR). An analysis of diffuse reflectance spectra (DRS) allowed for the assessment of band gap values of (1)â»(3) microcrystalline samples complexes. The use of different carboxylate ligands allowed the band gap of tetranuclear Ti(IV) oxo-clusters to be modulated in the range of 3.6 eVâ»2.5 eV. Density functional theory (DFT) methods were used to explain the influence of substitutes on band gap and optical activity. Dispersion of (1)â»(3) microcrystals in the poly(methyl methacrylate) (PMMA) matrixes enabled the formation of composite materials for which the potential photocatalytic activity was estimated through the study on methylene blue (MB) photodegradation processes in the presence of UV light. The results obtained revealed a significant influence of carboxylate ligands functionalization on the photoactivity of synthesized tetranuclear Ti(IV) oxo-complexes.
RESUMO
A new procedure for determination of biogenic amines (BA): histamine, phenethylamine, tyramine and tryptamine, based on the derivatization reaction with 2-chloro-1,3-dinitro-5-(trifluoromethyl)-benzene (CNBF), is proposed. The amines derivatives with CNBF were isolated and characterized by X-ray crystallography and (1)H, (13)C, (19)F NMR spectroscopy in solution. The novelty of the procedure is based on the pure and well-characterized products of the amines derivatization reaction. The method was applied for the simultaneous analysis of the above mentioned biogenic amines in wine samples by the reversed phase-high performance liquid chromatography. The procedure revealed correlation coefficients (R(2)) between 0.9997 and 0.9999, and linear range: 0.10-9.00 mg L(-1) (histamine); 0.10-9.36 mg L(-1) (tyramine); 0.09-8.64 mg L(-1) (tryptamine) and 0.10-8.64 mg L(-1) (phenethylamine), whereas accuracy was 97%-102% (recovery test). Detection limit of biogenic amines in wine samples was 0.02-0.03 mg L(-1), whereas quantification limit ranged 0.05-0.10 mg L(-1). The variation coefficients for the analyzed amines ranged between 0.49% and 3.92%. Obtained BA derivatives enhanced separation the analytes on chromatograms due to the inhibition of hydrolysis reaction and the reduction of by-products formation.
Assuntos
Aminas Biogênicas/análise , Cromatografia Líquida de Alta Pressão/métodos , Vinho/análise , Derivados de Benzeno/química , Cromatografia de Fase Reversa/métodos , Cristalografia por Raios X , Histamina/análise , Limite de Detecção , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fenetilaminas/análise , Triptaminas/análise , Tiramina/análiseRESUMO
Unsymmetrical Schiff base obtained by the condensation reaction of (1R,2R)(-)cyclohexanediamine with 2-hydroxybenzaldehyde and 2-hydroxynaphthaldehyde was used as a ligand for copper(II) and nickel(II). The ligand and complexes were characterized by circular dichroism (CD), UV-VIS, fluorescence, IR and (1)H (NOE diff), NOESY and (13)C NMR (ligand) spectra. The X-ray crystal structures solved for (1R,2R)(-)chxn(salH)(naftalH) and Cu(II)(1R,2R)(-)chxn(sal)(naftal) revealed tetrahedral distortion of coordination sphere in the solid phase. The [Cu(1R,2R)(-)chxn(sal)(naftal)]·0.5EtOH·1.25H(2)O complex crystallized in the monoclinic chiral C2 space group with two molecules in the asymmetric unit as well as disordered ethanol and water molecules. For both molecules Cu(II) ions were found in square-planar environments and adopts conformation described as "semi-open armed", because of distinctly oriented arms according to cyclohexane ring defined by three torsion angles. The thin layers of the ligands, copper(II) and nickel(II) complexes were deposited on Si(111) by a spin coating method and characterized with scanning electron microscopy SEM/EDS and fluorescence spectra. The ligand layers exhibit the most intensive fluorescence band at 498 nm, which can be assigned to emission transition π* â n of Schiff base ligand. For copper(II) layers the most intensive band from intraligand transition at 550 nm was observed. The highest intensity band was registered for the layer obtained when rotation speed was 1000 rpm and time 20 s. The nickel(II) complex layers fluorescence spectra exhibit an intensive band at 564 nm. The emission maxima of the copper(II) and nickel(II) complexes are shifted towards longer wavelength in comparison to the free ligand layers. CD spectra of the complexes in solution are characteristic for tetrahedral planar distortion of the chelate ring. The (1)H NMR NOE diff were measured and the position of the nearest hydrogen atoms in the cyclohexane and aromatic rings were discussed, suggesting the tetrahedral distortion of the central ion of the coordination sphere in solution.