Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Molecules ; 29(14)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39064907

RESUMO

Caffeic acid (CA), a hydrophobic polyphenol with various pharmacological activities, exhibits a low aqueous solubility and sensitivity to light. In order to improve its chemical properties and overcome the limits in its application, the compound was loaded in P123 micelles (MCs) prepared using two polymer concentrations (10 and 20% w/w, MC10 and MC20). The micelles were characterised in terms of the size distribution, zeta potential, drug encapsulation efficiency, rheology, and cumulative drug release. Micellar formulations exhibited sizes in the range of 11.70 and 17.70 nm and a good polydispersion, indicating the formation of relatively small-sized micelles, which is favourable for drug delivery applications. Additionally, the stability and antioxidant profiles of the free CA and the CA loaded in micelles were studied. The results obtained on the free CA showed the formation of photodegradation products endowed with higher DPPH scavenging activity with respect to the pure compound. Instead, it was found that the incorporation of CA into the micelles significantly increased its solubility and decreased the photodegradation rate. Overall, the results indicate the successful formation of P123 micelles loaded with CA, with promising characteristics such as a small size, good encapsulation efficiency, sustained release profile, and improved light stability. These findings suggest the potentiality of these micelles as a delivery system for CA, thus enhancing its bioavailability.


Assuntos
Ácidos Cafeicos , Micelas , Polímeros , Solubilidade , Ácidos Cafeicos/química , Polímeros/química , Antioxidantes/química , Estabilidade de Medicamentos , Liberação Controlada de Fármacos , Composição de Medicamentos , Tamanho da Partícula , Portadores de Fármacos/química
2.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930908

RESUMO

BACKGROUND: This work proposes the development of new vesicular systems based on anesthetic compounds (lidocaine (LID) and capsaicin (CA)) and antimicrobial agents (amino acid-based surfactants from phenylalanine), with a focus on physicochemical characterization and the evaluation of antimicrobial and cytotoxic properties. METHOD: Phenylalanine surfactants were characterized via high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Different niosomal systems based on capsaicin, lidocaine, cationic phenylalanine surfactants, and dipalmitoyl phosphatidylcholine (DPPC) were characterized in terms of size, polydispersion index (PI), zeta potential, and encapsulation efficiency using dynamic light scattering (DLS), transmitted light microscopy (TEM), and small-angle X-ray scattering (SAXS). Furthermore, the interaction of the pure compounds used to prepare the niosomal formulations with DPPC monolayers was determined using a Langmuir balance. The antibacterial activity of the vesicular systems and their biocompatibility were evaluated, and molecular docking studies were carried out to obtain information about the mechanism by which these compounds interact with bacteria. RESULTS: The stability and reduced size of the analyzed niosomal formulations demonstrate their potential in pharmaceutical applications. The nanosystems exhibit promising antimicrobial activity, marking a significant advancement in pharmaceutical delivery systems with dual therapeutic properties. The biocompatibility of some formulations underscores their viability. CONCLUSIONS: The proposed niosomal formulations could constitute an important advance in the pharmaceutical field, offering delivery systems for combined therapies thanks to the pharmacological properties of the individual components.


Assuntos
Lipossomos , Tensoativos , Lipossomos/química , Tensoativos/química , Tensoativos/farmacologia , Aminoácidos/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Simulação de Acoplamento Molecular , Anestésicos/química , Anestésicos/farmacologia , Composição de Medicamentos , Testes de Sensibilidade Microbiana
3.
Langmuir ; 32(35): 8926-33, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27504856

RESUMO

The loading of chemotherapics into smart nanocarriers that simultaneously possess more than one useful property for specifically targeting a tumor site improves their therapeutic effectiveness, reducing their side effects. Hence, we proposed a combined approach for the treatment of human breast cancer (BC) consisting of the co-encapsulation of doxorubicin and curcumin or doxorubicin and quercetin into multifunctional niosomes, which results in prolonged blood circulation and an ability to spontaneously accumulate at the tumor site (passive target) and to recognize and bind the tumor cells through dual ligand-receptor interactions (active target). The drug-loaded vesicles showed high stability and good capability of loading doxorubicin and antioxidants alone or in combination. Their diameter was around 400 nm. The drugs released from the vesicles were found to be controlled and sustained for over 24 h, with a strong dependence on the co-presence of the loaded molecules. Transferrin and/or folic acid were conjugated on the external surface of the niosomes as ligands, considerably improving the cellular uptake into MCF-7 and MDA-MB-231 malignant cells when compared with the uptake of nonconjugated samples. In vitro evaluation of anticancer activity demonstrated the strong potential of niosomes loaded with a doxorubicin/curcumin combination as useful devices in breast tumor treatment. These features hold great promise for the development of multifunctional devices that combine several advantages such as biocompatibility, stealth properties, loading capability, and active targeting, moving toward the development of more specific and efficient carriers for personalized tumoral therapy.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Curcumina/farmacologia , Doxorrubicina/farmacologia , Lipossomos/química , Poloxâmero/química , Laranja de Acridina/metabolismo , Antineoplásicos/química , Antioxidantes/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Doxorrubicina/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Endocitose , Corantes Fluorescentes/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Humanos , Cinética , Células MCF-7 , Terapia de Alvo Molecular , Tamanho da Partícula , Rodaminas/metabolismo , Transferrina/química , Transferrina/metabolismo
4.
Biomed Microdevices ; 16(6): 851-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25129111

RESUMO

The objective of this research was to study the effect of diclofenac sodium compartmentalization on the physico-chemical properties (such as size, drug entrapment efficiency and percutaneous permeation across rabbit skin) of niosomal vesicles used as carriers. Niosomes were prepared starting from nonionic commercial surfactants belonging to the class of Polysorbates and Pluronics: mixtures of Span 60/F127 and Tween 60/F127 at different ratios were used to obtain vesicles and all formulations were compared in terms of dimensions, morphology, polydispersity index and entrapment efficiency. Moreover, the enhancing effect of niosomes on the ex vivo percutaneous penetration of diclofenac sodium was investigated using Franz-type diffusion chambers and compared to that obtained by using the corresponding drug solution. Results demonstrated that niosomes were spherical and homogeneous in shape. Their size was found to be dependent on the hydrophile-lipophile balance of the surfactant mixture: increasing hydrophobicity resulted in smaller vesicles. Drug incorporation led to a significant variation in vesicle size dependently from the compartment in which the drug was located. The permeation of diclofenac from free solution used as control was found to be lower respect to that obtained for all niosomal formulations, that can be considered as percutaneous permeation enhancers. In particular, the results indicated that the highest cumulative amounts of diclofenac permeated across rabbit skin after 24 h were obtained by formulations in which the drug was located in the aqueous core.


Assuntos
Anti-Inflamatórios não Esteroides , Diclofenaco/metabolismo , Absorção Cutânea , Administração Cutânea , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Diclofenaco/química , Diclofenaco/farmacologia , Lipossomos , Coelhos , Pele
5.
Pharmaceutics ; 16(3)2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38543212

RESUMO

In this study, liposomes coated with novel multifunctional polymers were proposed as an innovative platform for tumor targeted drug delivery. Novel Folic acid-Cysteine-Thiolated chitosan (FTC) derivatives possessing active targeting ability and redox responsivity were synthesized, characterized, and employed to develop FTC-coated liposomes. Liposomes were characterized for size, surface charge and drug encapsulation efficiency before and after coating. The formation of a coating layer on liposomal surface was confirmed by the slight increase in particle size and by zeta-potential changes. FTC-coated liposomes showed a redox-dependent drug release profile: good stability at physiological conditions and rapid release of liposome-entrapped calcein in presence of glutathione. Moreover, the uptake and cytotoxic activity of doxorubicin-loaded FTC-coated liposomes was evaluated on murine B16-F10 and human SKMEL2 melanoma cancer cells. Results demonstrated enhanced uptake and antitumor efficacy of FTC-coated liposomes compared to control chitosan-coated liposomes in both cancer lines, which is attributed to higher cellular uptake via folate receptor-mediated endocytosis and to triggered drug release by the reductive microenvironment of tumor cells. The proposed novel liposomes show great potential as nanocarriers for targeted therapy of cancer.

6.
Pharmaceutics ; 16(7)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39065606

RESUMO

In the current study, a smart release system responsive to temperature was developed to improve the efficiency of tetracycline (TC) in antibacterial therapy. The nanovesicles designed consist of a non-ionic surfactant, SPAN60, cholesterol and a phase change material (PCM) as a thermoresponsive gating material. Niosomes were prepared using an increasing amount of PCM and characterized in terms of size, zeta potential, colloidal stability and thermoresponsive properties. The vesicles that developed were homogenous in size, had good biocompatibility and stability for up to 3 months and demonstrated thermoresponsive behavior. A low drug leakage was observed at 37 °C, while a rapid release occurred at 42 °C, due to the faster diffusion rate of the drug trough the melted PCM. This controllable drug release capacity allows us to avoid premature drug release, minimizing unwanted and toxic effects and ensuring a long retention time in the nanodevice so that it reaches the infected sites. In addition, TC-loaded niosomes were screened to investigate their antibacterial activity against various Gram-positive and Gram-negative bacteria by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. An interesting temperature-dependent antibacterial activity was observed against some bacterial strains: the niosomes activity against S. epidermis, for example, was improved by the temperature increase, as suggested by a reduction in MIC values from 112.81 to 14.10 µM observed at 37 and 42 °C, respectively. Taken together, the thermoresponsive platform developed allows us to use lower antibiotic amounts while ensuring therapeutic efficacy and, so, will advance the development of a novel antibacterial agent in clinical practice.

7.
Gels ; 10(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38534599

RESUMO

BACKGROUND: This study aims to evaluate the percutaneous permeation profiles of caffeic acid (CA) from the cubic and hexagonal liquid crystalline phases of Pluronic P123/water mixtures. METHOD: The resulting drug-loaded mesophases were subjected to characterisation through deuterium nuclear magnetic resonance spectroscopy and polarised optical microscopy observations. These analyses aimed to evaluate the structural changes that occurred in the mesophases loading with CA. Additionally, steady and dynamic rheology studies were conducted to further explore their mechanical properties and correlate them to the supramolecular structure. Finally, CA release experiments were carried out at two different temperatures to examine the behaviour of the structured systems in a physiological or hyperthermic state. RESULTS: As the concentration of the polymer increases, an increase in the viscosity of the gel is noted; however, the addition of caffeic acid increases microstructure fluidity. It is observed that the temperature effect conforms to expectations. The increase in temperature causes a decrease in viscosity and, consequently, an increase in the rate of permeation of caffeic acid. CONCLUSIONS: The CA permeation profile from the prepared formulations is mostly dependent on the structural organisation and temperature. Cubic mesophase LLC 30/CA showed greater skin permeation with good accumulation in the skin at both tested temperatures.

8.
Langmuir ; 29(41): 12638-46, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24040748

RESUMO

An efficient tumor-targeted niosomal delivery system for the vehiculation of doxorubicin hydrochloride as an anticancer agent was designed. Niosomes were prepared from a mixture of an opportunely modified Pluronic L64 surfactant and cholesterol as a membrane additive and characterized in terms of size and related distribution function and drug entrapment efficiency. After the preparation, transferrin was conjugated to niosomes to produce transferrin (Tf) niosomes, and the cytotoxicity of the final formulation was studied. The specific uptake of Tf niosomes into cells was evaluated via incubation of MCF-7 and MDA-MB-231 cells with fluorescently rhodamine-loaded Tf niosomes for various times and concentration intervals and further investigated by fluorescence microscopy. Results showed that doxorubicin can be easily encapsulated into niosomes, which are regular and spherical in shape. Moreover, transferrin conjugate niosomes demonstrated far greater extents of cellular uptake by MCF-7 and MDA-MB-231 cells, suggesting that they were mainly taken up by transferrin receptor-mediated endocytosis. Doxorubicin-loaded niosome anticancer activity was also achieved against MCF-7 and MDA-MB-231 tumor cell lines, and a significant reduction in viability in a dose- and time-related manner was observed. Finally, our formulation could be potentially useful as a target doxorubicin delivery system in anticancer therapy.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Poloxâmero/química , Transferrina/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lipossomos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Poloxâmero/administração & dosagem , Relação Estrutura-Atividade , Transferrina/administração & dosagem
9.
Microorganisms ; 10(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056586

RESUMO

In this research, a new ecofriendly and sustainable fungicide agent, with the ability to control Verticillium wilt, was developed. To this purpose, a green extract of olive leaf (OLE) was prepared by ultrasound-assisted extraction (UAE) and characterized in terms of polyphenol content and antioxidant activity. Then, OLE was loaded in chitosan nanoparticles (CTNPs) to combine the antifungal activity of CTNPs and phenolic compounds to obtain an important synergic effect. Nanoparticles were synthetized using the ionic gelation technique and characterized in terms of sizes, polydispersity index, Z-potential, encapsulation efficiency, and release profile. Qualitative and quantitative analyses of OLE were performed by the HPLC method. OLE-loaded CTNPs exhibited good physicochemical properties, such as a small size and positive surface charge that significantly contributed to a high antifungal efficacy against Verticillum dahliae. Therefore, their antifungal activity was evaluated in vitro, using the minimal inhibition concentration (MIC) assay in a concentration range between 0.071 and 1.41 mg/mL. Free OLE, blank CTNPs, and OLE-loaded CTNPs possessed MIC values of 0.35, 0.71, and 0.14 mg/mL, respectively. These results suggest an important synergic effect when OLE was loaded in CTNPs. Thereafter, we tested the two higher concentrations on tomato plants inoculated with V. dahliae, where no fungal growth was observed in the in vitro experiment, 0.71 and 1.41 mg/mL. Interestingly, OLE-loaded CTNPs at the higher concentration used, diminished the symptoms of Verticillium wilt in tomato plants inoculated with V. dahliae and significantly enhanced plant growth. This research offers promising results and opens the possibility to use OLE-loaded CTNPs as safe fungicides in the control strategies of Verticillium wilt at open field.

10.
Pharmaceutics ; 14(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36297625

RESUMO

Lidocaine is a local anaesthetic drug with an amphiphilic structure able to self-associate, under certain conditions, in molecular aggregates playing the role of both carrier and drug. The aim of this study was to determine the optimal conditions for obtaining vesicular carriers, called lidosomes. The new formulations were obtained using both lidocaine and lidocaine hydrochloride and different hydration medias (distilled water, acid, and basic aqueous solution). Lidosomes formulations were characterized in terms of size, ζ-potential, drug retained, stability formulation, and ex vivo permeation profile. Moreover, lidosomes were incorporated in two different gel structures: one based on carboxymethylcellulose and one based on pluronic F-127 to achieve suitable properties for a topical application. Results obtained showed that lidocaine showed a better performance to aggregate in vesicular carriers in respect to hydrochloride form. Consequently, only formulations comprised of lidocaine were studied in terms of skin permeation performance and as carriers of another model drug, capsaicin, for a potential combined therapy. Lidocaine, when in form of vesicular aggregates, acted as percutaneous permeation enhancer showing better permeation profiles with respect to drug solutions. Moreover, lidosomes created a significant drug depot into the skin from which the drug was available for a prolonged time, a suitable feature for a successful local therapy.

11.
Pharmaceutics ; 13(6)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063874

RESUMO

Nanoantioxidants have emerged as smart devices able to provide improved stability and biocompatibility and sustained and targeted release of conventional antioxidants. In the current research, a new family of nanoantioxidants has been developed by covalently grafting gallic (GA), caffeic (CF) and ferulic (FR) acid on the surfaces of Tween 80 niosomes. First, empty and curcumin (CUR)-loaded vesicles were prepared using a thin-layer evaporation technique and then functionalized with phenolic acids using carbodiimide chemistry. Nanoantioxidants obtained were characterized in terms of size, polydispersity index, zeta potential, and loading efficiency. Their antioxidant activity was studied by ABTS and DPPH assays. Surface functionalization of empty and CUR-loaded vesicles provided stable vesicles with intrinsic antioxidant properties. In vitro antioxidant assays highlighted that vesicles functionalized with FR or GA exhibited better antioxidant activity compared to CF-grafted niosomes. Furthermore, vesicles loaded with CUR and functionalized with GA and CF showed an enhanced scavenging ability of ABTS and DPPH radicals, compared to the single antioxidant-loaded formulations, highlighting an important synergic effect of CUR when used in combination with GA ad CF.

12.
Pharmaceutics ; 13(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920090

RESUMO

1,4-Dihydropyridines (DHPs) are the most important class of L-type calcium channel blockers that are employed for the treatment of cardiovascular diseases, particularly hypertension. Various modifications on this scaffold lead to the discovery of new DHPs blocking different types of calcium channels. Among them, the T-type calcium channel has recently attracted great interest due to its role in chronic pain conditions. In this study, we selected three newly synthesized DHPs (HM8, HM10 and MD20) with different selectivity profiles to the T-type calcium channel and formulated them in micellar solutions and micellar-in-gel matrices to be tested for potential topical use in the treatment of neuropathic pain. To prevent the well-known sensitivity to light of the DHPs, the studied compounds were entrapped in colloidal aggregates obtained by using edible Pluronic® surfactants and adding α-tocopherol as an antioxidant. All the prepared formulations were exposed to stressing light, according to international rules. Along with the degradation experiments, the concentrations of the parent compounds and by-products were calculated by multivariate curve resolution-alternating least squares (MCR-ALS) applied to the spectral data. The defined formulations proved suitable as light-stable matrices for the DHP compounds, showing an increase in stability for HM8 and MD20 and an almost complete photoprotection for HM10, compared to ethanol solutions and standard gel formulations.

13.
Chem Pharm Bull (Tokyo) ; 58(1): 103-5, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20045975

RESUMO

In the present work, we report the synthesis of a new 5-amino salicylic acid (5-ASA) pro-prodrug, useful in Crohn disease treatment, and the evaluation of its antioxidant activity. Using as pharmacological carrier L-lysine amino acid and taking advantage of its intrinsic chemical reactivity, due to the presence of two amino groups, placed on the chiral center and in epsilon-position, we inserted trans-ferulic acid in epsilon-position, through amidation reaction, esterified with methanol the carboxylic group and, finally, submitted the free amino group to diazotation with 5-ASA, principal drug for inflammatory bowel diseases (IBD) care. All intermediates of synthesis and the final product (derivative A) were characterized with usual spectroscopic techniques, as FT-IR, GC/MS and (1)H-MNR. Finally, the derivative A antioxidant activity in inhibiting the lipid peroxidation, in rat-liver microsomal membranes, induced in vitro by two different sources of free radicals, 2,2'-azobis (2-amidinopropane) (AAPH) and tert-butyl hydroperoxide (tert-BOOH), was evaluated. Our pro-prodrug could be successfully applied in pharmaceutical field both as prodrug of 5-ASA than as carrier of trans-ferulic acid.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Mesalamina/química , Mesalamina/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Animais , Antioxidantes/síntese química , Colo/metabolismo , Ácidos Cumáricos/química , Peroxidação de Lipídeos/efeitos dos fármacos , Lisina/química , Mesalamina/síntese química , Microssomos Hepáticos/efeitos dos fármacos , Pró-Fármacos/síntese química , Ratos
14.
Artigo em Inglês | MEDLINE | ID: mdl-32195234

RESUMO

Olive leaf extract is characterized by a high content of phenols and flavonoids (oleuropein, luteolin, and their derivatives). These compounds are defined as secondary metabolites and exert such as anti-inflammatory, antioxidant, and antimicrobial activities. We investigated the in vitro antifungal activity of two olive leaf extracts (named EF1 and EF2) against a Fusarium proliferatum (AACC0215) strain that causes diseases to many economically important plants and synthesizing diverse mycotoxins. In this work, we aimed to identify the most appropriate concentration between the tested two olive leaf extracts to develop a safe, stable and efficient drug delivery system. Qualitative and quantitative analyses of the two olive leaf extracts by (HPLC) were performed. Furthermore, we also evaluated the antifungal effects of the two leaf extracts when encapsulated in chitosan-tripolyphosphate nanoparticles. The major compound in both EF1 and EF2 was oleuropein, with 336 and 603 mg/g, respectively, however, high concentrations of flavonoid were also present. EF1 and EF2 showed a concentration depended effect on F. proliferatum (AACC0215) viability. Our results showed a great efficacy of EF1/nanoparticles at the higher concentration tested (12X) against the target species. In this case, we observed an inhibition rate to both germination and growth of 87.96 and 58.13%, respectively. We suggest that EF1 olive leaf extracts, as free or encapsulated in chitosan-tripolyphosphate nanoparticles, could be used as fungicides to control plant diseases. Finally, future application of these findings may allow to reduce the dosage of fungicides potentially harmful to human health.

15.
Pharmaceutics ; 12(5)2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380748

RESUMO

Photostability studies were performed on topical formulations containing the anti-inflammatory drug Nabumetone and an analog newly synthesized in order to achieve better photostability and pharmacokinetic profile. Stability tests, according to the International Conference on Harmonization rules, were applied on ethanol solutions and topical gel formulations of both compounds. The photodegradation profiles were monitored by Multivariate curve resolution applied to the UV spectral data. The inclusion of the compounds in microemulsion was investigated to improve light stability and, at the same time, to ensure a sustained release system for skin delivery. All the formulations in solution, gel, microemulsion, and microemulsion-in-gel were exposed to a forced irradiation of 350 W/m2, corresponding to a 21 kJ/m2 min, for up to 300 min. Photostability increased significantly for both drugs in the liquid microemulsion and microemulsion-in-gel, compared to the ethanol solution and plain gel, reaching a residual drug of 97% and 98% for Nabumetone and analog in microemulsion-in-gel, respectively. Permeation experiments on the microemulsion-in-gel showed a better performance of the analog formulated at 0.2%, compared to the same formulation of Nabumetone at 0.7%. These results highlight the potential of the designed matrices as delayed drug delivery systems along with the use of lower drug doses leading to reduced side effects.

16.
Colloids Surf B Biointerfaces ; 173: 623-631, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30368209

RESUMO

The low efficacy of Acyclovir topical therapy is due to its physicochemical properties that limit the permeation across the stratum corneum. The goal of this research was to evaluate the ability of biodegradable surfactant, Brij97, to self-assembly in different types of colloid systems which can improve the Acyclovir permeation and accumulation at the target site (the basal epidermis). New Acyclovir formulation based on Brij97 have been analyzed in order to investigate the effect of drug encapsulation on the structure. After that, the in vitro percutaneous permeation of Acyclovir has been compared with that one of the commercial specialty Zovirax® 5%. To estimate the potential of the new formulations proposed as topical delivery, it has been essential to quantify the Acyclovir in the skin layers. The results confirmed that the self-assembly of the surfactant in different nanosized structures improved the amount of permeated Acyclovir and the formation of intracutaneous drug reservoir. Furthermore, the different lipophilicity and structural organization of carriers based on Brij97 showed different influence on the promotion of permeation. The experimental data suggest that the designed carriers could be a valid alternative to improve the efficacy of the current antiviral therapy.


Assuntos
Aciclovir/farmacocinética , Antivirais/farmacocinética , Portadores de Fármacos , Lipossomos/química , Nanoestruturas/química , Óleos de Plantas/química , Polietilenoglicóis/química , Aciclovir/química , Animais , Antivirais/química , Colesterol/química , Composição de Medicamentos/métodos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos/metabolismo , Nanoestruturas/ultraestrutura , Permeabilidade , Coelhos , Pele/metabolismo , Absorção Cutânea
17.
Pharmaceutics ; 12(1)2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888000

RESUMO

The clinical efficacy of methotrexate (MTX) is limited by its poor water solubility, its low bioavailability, and the development of resistance in cancer cells. Herein, we developed novel folate redox-responsive chitosan (FTC) nanoparticles for intracellular MTX delivery. l-Cysteine and folic acid molecules were selected to be covalently linked to chitosan in order to confer it redox responsiveness and active targeting of folate receptors (FRs). NPs based on these novel polymers could possess tumor specificity and a controlled drug release due to the overexpression of FRs and high concentration of reductive agents in the microenvironment of cancer cells. Nanoparticles (NPs) were prepared using an ionotropic gelation technique and characterized in terms of size, morphology, and loading capacity. In vitro drug release profiles exhibited a glutathione (GSH) dependence. In the normal physiological environment, NPs maintained good stability, whereas, in a reducing environment similar to tumor cells, the encapsulated MTX was promptly released. The anticancer activity of MTX-loaded FTC-NPs was also studied by incubating HeLa cells with formulations for various time and concentration intervals. A significant reduction in viability was observed in a dose- and time-dependent manner. In particular, FTC-NPs showed a better inhibition effect on HeLa cancer cell proliferation compared to non-target chitosan-based NPs used as control. The selective cellular uptake of FTC-NPs via FRs was evaluated and confirmed by fluorescence microscopy. Overall, the designed NPs provide an attractive strategy and potential platform for efficient intracellular anticancer drug delivery.

18.
Pharmaceutics ; 11(5)2019 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-31035595

RESUMO

An in-depth analysis of nanotechnology applications for the improvement of solubility, distribution, bioavailability and stability of reverse transcriptase inhibitors is reported. Current clinically used nucleoside and non-nucleoside agents, included in combination therapies, were examined in the present survey, as drugs belonging to these classes are the major component of highly active antiretroviral treatments. The inclusion of such agents into supramolecular vesicular systems, such as liposomes, niosomes and lipid solid NPs, overcomes several drawbacks related to the action of these drugs, including drug instability and unfavorable pharmacokinetics. Overall results reported in the literature show that the performances of these drugs could be significantly improved by inclusion into nanosystems.

19.
Int J Pharm ; 353(1-2): 233-42, 2008 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-18191509

RESUMO

An innovative niosomal system made up of alpha,omega-hexadecyl-bis-(1-aza-18-crown-6) (Bola), Span 80 and cholesterol (2:5:2 molar ratio) was proposed as a topical delivery system for 5-fluorouracil (5-FU), largely used in the treatment of different forms of skin cancers. Bola-niosomes showed a mean size of approximately 400 nm, which were reduced to approximately 200 nm by a sonication procedure with a polydispersion index value of 0.1. Bola-niosomes showed a loading capacity of approximately 40% with respect to the amount of 5-FU added during the preparation. 5-FU-loaded bola-niosomes were tested on SKMEL-28 (human melanoma) and HaCaT (non-melanoma skin cancer with a specific mutations in the p53 tumor suppressor gene) to assess the cytotoxic activity with respect to the free drug. 5-FU-loaded bola-niosomes showed an improvement of the cytotoxic effect with respect to the free drug. Confocal laser scanning microscopy studies were carried out to evaluate both the extent and the time-dependent bola-niosome-cell interaction. The percutaneous permeation of 5-FU-loaded niosomes was evaluated by using human stratum corneum and epidermis membranes. Bola-niosomes provided an increase of the drug penetration of 8- and 4-folds with respect to a drug aqueous solution and to a mixture of empty bola-niosomes with a drug aqueous solution.


Assuntos
Antimetabólitos Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Fluoruracila/administração & dosagem , Hexoses/administração & dosagem , Lipossomos , Neoplasias Cutâneas/tratamento farmacológico , Tensoativos/administração & dosagem , Adulto , Células Cultivadas , Humanos
20.
Macromol Biosci ; 8(1): 86-95, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-17787021

RESUMO

In this study we report the synthesis and characterisation of cellulose ferulate, lipoate and alpha-tocopherulate, and their ability to inhibit lipid peroxidation in rat-liver microsomal membranes, induced in vitro by two different sources of free radicals: tert-butyl hydroperoxide and 2,2'-azobis-(2-amidinopropane). We also compared the antioxidant efficiency of the ferulate derivatives obtained through two different synthetic runs, and of a tocopherulate derivative prepared from 6-carboxycellulose. This study showed that the designed systems, preserving the antioxidant activity of the free substrates, are more effective in protecting from tert-butyl hydroperoxide than from 2,2'-azobis-(2-amidinopropane). Moreover, the cellulose ferulate with the higher degree of substitution acted as the best antioxidant.


Assuntos
Antioxidantes/síntese química , Celulose/síntese química , Ácidos Cumáricos/química , Ácido Tióctico/química , alfa-Tocoferol/química , Animais , Radicais Livres/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ratos , terc-Butil Hidroperóxido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA