Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(8): 087205, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23473196

RESUMO

We study the magnetic relaxation rate Γ of the single-molecule magnet Mn(12)-tBuAc as a function of the magnetic field component H(T) transverse to the molecule's easy axis. When the spin is near a magnetic quantum tunneling resonance, we find that Γ increases abruptly at certain values of H(T). These increases are observed just beyond values of H(T) at which a geometric-phase interference effect suppresses tunneling between two excited energy levels. The effect is washed out by rotating H(T) away from the spin's hard axis, thereby suppressing the interference effect. Detailed numerical calculations of Γ using the known spin Hamiltonian accurately reproduce the observed behavior. These results are the first experimental evidence for geometric-phase interference in a single-molecule magnet with true fourfold symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA