Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
3.
PLoS One ; 9(3): e90939, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24638020

RESUMO

Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.


Assuntos
Clima , Sedimentos Geológicos , Lagoas , Água Doce/química , Geografia , Humanos , Concentração de Íons de Hidrogênio , Lagos , Micronésia , Oxigênio/química , Salinidade , Temperatura
4.
PLoS One ; 7(10): e47018, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071700

RESUMO

The idea that low surface densities of hairs could be a heat loss mechanism is understood in engineering and has been postulated in some thermal studies of animals. However, its biological implications, both for thermoregulation as well as for the evolution of epidermal structures, have not yet been noted. Since early epidermal structures are poorly preserved in the fossil record, we study modern elephants to infer not only the heat transfer effect of present-day sparse hair, but also its potential evolutionary origins. Here we use a combination of theoretical and empirical approaches, and a range of hair densities determined from photographs, to test whether sparse hairs increase convective heat loss from elephant skin, thus serving an intentional evolutionary purpose. Our conclusion is that elephants are covered with hair that significantly enhances their thermoregulation ability by over 5% under all scenarios considered, and by up to 23% at low wind speeds where their thermoregulation needs are greatest. The broader biological significance of this finding suggests that maintaining a low-density hair cover can be evolutionary purposeful and beneficial, which is consistent with the fact that elephants have the greatest need for heat loss of any modern terrestrial animal because of their high body-volume to skin-surface ratio. Elephant hair is the first documented example in nature where increasing heat transfer due to a low hair density covering may be a desirable effect, and therefore raises the possibility of such a covering for similarly sized animals in the past. This elephant example dispels the widely-held assumption that in modern endotherms body hair functions exclusively as an insulator and could therefore be a first step to resolving the prior paradox of why hair was able to evolve in a world much warmer than our own.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Elefantes/fisiologia , Cabelo/fisiologia , Animais , Modelos Biológicos , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA